請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79783完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉仲基(Chung-Kee Yeh) | |
| dc.contributor.author | Yuan-Lung Chang | en |
| dc.contributor.author | 張元隆 | zh_TW |
| dc.contributor.author | f96631038 | |
| dc.date.accessioned | 2022-11-23T09:11:12Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.available | 2022-11-23T09:11:12Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-08 | |
| dc.identifier.citation | 1.黃國祥、周長彥、謝廣文、李易樺。2019。自動採果機構設計與控制。農業機械學刊 28(4): 39-48。 2.張元隆、葉仲基。2021。機械手臂機構設計與農業應用。農業機械學刊 30(2)。(已接受刊登)。 3.智慧農業。2018。水稻秧苗盤機械手臂取卸系統。網址:https://www.intelligentag i.com.tw/xmdoc/cont?xsmsid=0J142604730042131234 sid=0J183824041206394658。上網日期:2021-10-14。 4.Allotta, B., G. Buttazzo, P. Dario, and F. Quaglia. 1990. A force/torque sensor-based technique for robot harvesting of fruits and vegetables. IEEE International Workshop on Intelligent Robots and Systems 1:231-235. 5.Chang, Y. L. and C. K. Yeh. 2021. Optimal Manipulator Parameters and Placement Based on Decoupled Analysis. Comptes rendus de l'Académie bulgare des Sciences 74(4): 576-584. 6.Cao, Y., K. Lu, X. Li, and Y. Zang. 2011. Accurate Numerical Methods for Computing 2D and 3D Robot Workspace. International Journal of Advanced Robotic Systems 8(6): 1-13. 7.Caro, S., S. Garnier, B. Furet, A. Klimchik, and A. Pashkevich. 2014. Workpiece placement optimization for machining operations with industrial robots. IEEE/ASME International Conference Advanced Intelligent Mechatronics (AIM) 1716–1721. 8.Ceres, R., J. L. Pons, A. R. Jimenez, and J. M. Martin. 1998. Design and implementation of an aided fruit-harvesting robot (Agribot). Industrial Robot 25(5): 337-346. 9.Chen, C. J. and C. S. Tseng. 1996. The path and location planning of workpieces by genetic algorithms. Journal of Intelligent Manufacturing 7(1): 69-76. 10.Chiba, R., T. Arai, T. Ueyama, T. Ogata, and T. Ota. 2016. Working environment design for effective palletizing with a 6 DOF manipulator. International Journal of Advanced Robotic Systems 13(2): 1-8. 11.Doan, N.C.N., and W. Lin. 2017. Optimal robot placement with consideration of redundancy problem for wrist-partitioned 6R articulated robots. Robotics and Computer–Integrated Manufacturing 48: 233-242. 12.EPSON。2021。四軸(SCARA-T6)。網址:https://www.epson.com.tw/商用系列/工業用機械手臂/四軸%28SCARA%29---T系列/T6/p/SCARA-T6。上網日期:2021-10-25。 13.Fedclema, J. T. 1996. Kinematically for minimum robot placement time coordinated motion. Proceedings of the 1996 IEEE International Conference on Robotics and Automation 3395-3400. 14.FANUC. 2020. Robot CR-35iA. Available at:https://www.fanuc.co.jp/en/product/robot/f_r_collabo.html#cr4ia. Accessed 25 October 2021. 15.Good Fruit Grower. 2020. Robotic pickers progress through pandemic. Available at:https://www.goodfruit.com/robotic-pickers-progress-through-pandemic/. Accessed 12 October 2021. 16.Hemmerle, J. S., and F. B. Prinz. 1991. Optimal path placement for kinematically redundant manipulators. Proceedings of the 1991 IEEE International Conference on Robotics and Automation 1234-1244. 17.Homayoun, S. 1995. Reachability analysis for base placement in mobile manipulators. Journal of Field Robotics 12(1): 29-43. 18.Hammond, F. L., and K. Shimada. 2009. Improvement of redundant manipulator task agility using multiobjective weighted isotropy-based placement optimization. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics 645-652. 19.IFR. 2021. World Robotics 2021. Available at: https://ifr.org/free-downloads/. Accessed 25 October 2021. 20.IEEE. 2021. ROBOTS: Your Guide to the World of Robotics. Available at:https://robots.ieee.org/robots/unimate/. Accessed 25 October 2021. 21.Iacca, G., F. Caraffini, and F. Neri. 2014. Multi-Strategy Coevolving Aging Particle Optimization. International Journal of Neural Systems 24(1): 1450008. 22.INTUITIVE. 2021. Da Vinci Systems. Available at:https://www.intuitive.com/en-us/products-and-services/da-vinci/systems. Accessed 16 October 2021. 23.KUKA. 2021. Bonding and sealing. Available at:https://www.kuka.com/zh-tw/產品/程序技術/bonding-and-sealing. Accessed 10 October 2021. 24.Malek, K. A., W. Yu, and J. Yang. 2004. Placement of robot manipulators to maximize dexterity. International Journal of Robotics and Automation. 1-26. 25.Malek, K. A., and J. Yang. 2006. Workspace boundaries of serial manipulators using manifold stratification. The International Journal of Advanced Manufacturing Technology 28: 1211–1229. 26.Mitsi, K. S., K. D. Bouzakis, D. Sagris, and G. Mansour. 2008. Determination of optimum robot base location considering discrete end-effector positions by means of hybrid genetic algorithm. Robotics and Computer-Integrated Manufacturing 24(1): 50-59. 27.Pamanes, G. J. A. and S. Zeghloul. 1991. Optimal placement of robotic manipulators using multiple kinematic criteria. Proceedings of the 1991 IEEE International Conference on Robotics and Automation 1: 933-938. 28.Pashkevich, A. P. and M. A. Pashkevich. 1998. Multiobjective optimization of robot location in a workcell using genetic algorithms. UKACC International Conference on Control '98 757-762. 29.Pamanes, A., S. Zeghloul, and E. C. Durón. 2008. Single and multi-objective optimization of path placement for redundant robotic manipulators. Ingeniería. Investigación y Tecnología 9(3): 231-257. 30.Panasonic. 2018. Introducing AI-equipped Tomato Harvesting Robots to Farms May Help to Create Jobs. Available at:https://news.panasonic.com/global/stories/2018/57801.html. Accessed 8 October 2021. 31.Papanikolaidi, I., A. Synodinos, V. C. Moulianitis, N. A. Aspragathos, and E.K. Xidias. 2013. Optimal base placement of the Da Vinci system based on the manipulability index. Proceedings of the RAAD 22nd International Workshop on Robotics in Alpe-Adria-Danube Region 262-268. 32.Santos, R. R. D., V. Steffen, and S. D. F. P. Saramago. 2010. Optimal task placement of a serial robot manipulator for manipulability and mechanical power optimization. Intelligent Information Management 2(9): 512-525. 33.TrimBot2020. 2019. Workshop on Agricultural Robotics. Available at:http://trimbot2020.webhosting.rug.nl/workshop-on-agricultural-robotics-photos/. Accessed 14 October 2021. 34.Ur-Rehman, R., S. Caro, D. Chablat, and P. Wenger. 2010. Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: application to the Orthoglide. Mechanism and Machine Theory 45(8): 1125-1141. 35.Urbanic, R. J., R. Hedrick, and A. M. Djuric. 2016. A linkage based solution approach for determining 6 axis serial robotic travel path feasibility. SAE International Journal of Materials and Manufacturing 9(2): 444-456. 36.Vahrenkamp, N., T. Asfour, and R. Dillmann. 2013. Robot placement based on reachability inversion. Proceedings of IEEE International Conference on Robotics and Automation 1970-1975. 37.Wikimedia Commons. 2018. A Cartesian Coordinate Robot for Dispensing Fruit Fly Food. Available at:https://commons.wikimedia.org/w/index.php?curid=74577978. Accessed 25 October 2021. 38.Yang, J., W. Yu, J. Kim, and A. K. Malekb. 2009. On the placement of open-loop robotic manipulators for reachability. Mechanism and Machine Theory 44(4): 671-684. 39.Zacharias, F., C. Borst, and G. Hirzinger. 2007. Capturing robot workspace structure: representing robot capabilities. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems 3229-3236. 40.Zacharias, F., C. Borst, S. Wolf, and G. Hirzinger. 2013. The capability map: a tool to analyze robotic arm workspaces. International Journal of Humanoid Robotics 10(4): 1350031. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79783 | - |
| dc.description.abstract | 機械手臂在農業、醫療和工業等領域的自動化操作中發揮著重要作用,其機構設計值得進一步研究。本文探討運用現今電腦高速運算的特性,設計機械手臂尺寸參數和其最佳放置位置。設計系統採用5自由度PUMA 560型機械手臂,使用者可以指定機械手臂的初始尺寸,以及端效器須達到的特定點座標及特定角度,且機械手臂各關節點致動器角度須滿足使用者指定的範圍,透過調整機械手臂的尺寸大小及位置,以工作空間分析來滿足使用者需求。設計系統需要考量致動器的角度範圍,求取機械手臂位置、連桿長度尺寸調整參數,並以最小工作空間為搜尋目標。 本文的方法將5自由度PUMA 560型機械手臂位置功能及方向功能分別解耦分析,以兩種方法探討機械手臂設計方式。方法1透過機械手臂其中3自由度在工作空間中的部分球形殼體空間來計算最佳化,以簡化定位問題,透過定義約束條件不等式,以搜尋計算機械手臂尺寸參數的最小尺寸調整參數、機械手臂的位置以及其關節角度,實現最小工作空間,並滿足使用者需求。方法2透過以致動器可能產生角度組合之向量分析,滿足機械手臂端效器須達到的特定角度,然後將選擇最少角度組合的特定點座標及其向量來計算機械手臂的位置,應用反向運動學用於檢查其餘各致動器角度是否滿足約束條件,再從所有滿足條件的組合中選出最小尺寸調整參數,以決定機械手臂的放置位置和致動器角度。以上兩種機械手臂設計方法均將端效器位置和方向功能解耦,以簡化機械手臂關節角度計算、尺寸參數和機械手臂放置等問題,最後比較兩方法之優缺點。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:11:12Z (GMT). No. of bitstreams: 1 U0001-0302202211545900.pdf: 3679547 bytes, checksum: a1deeb085e7ff1b27bd3a7b4f9895b27 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii ABSTRACT iii 圖目錄 vii 表目錄 ix 符號說明 x 第1章 緒論 1 1.1 背景說明 1 1.2 動機 2 1.3 目的 7 第2章 文獻探討 9 2.1 機械手臂類型 9 2.1.1 三軸機械手臂 9 2.1.2 四軸機械手臂 9 2.1.3 五、六軸機械手臂 10 2.1.4 各型式機械手臂優缺點分析 12 2.2 機械手臂設計及基座位置研究 13 第3章 材料與方法 16 3.1 正向運動學 16 3.2 機械手臂工作空間分析 17 3.3 機構設計方法1 20 3.4 機構設計方法2 28 第4章 結果與討論 33 4.1 機械手臂設計方法1 33 4.2 機械手臂設計方法2 35 第5章 結論與建議 39 5.1 結論 39 5.2 建議 41 參考文獻 42 附錄 46 | |
| dc.language.iso | zh-TW | |
| dc.subject | 端效器 | zh_TW |
| dc.subject | 機械手臂 | zh_TW |
| dc.subject | 工作空間 | zh_TW |
| dc.subject | 機構設計 | zh_TW |
| dc.subject | 解耦分析 | zh_TW |
| dc.subject | Decoupled Analysis | en |
| dc.subject | End Effector | en |
| dc.subject | Robot Manipulator | en |
| dc.subject | Workspace | en |
| dc.subject | Mechanism Design | en |
| dc.title | 基於工作空間分析之機械手臂機構設計 | zh_TW |
| dc.title | Robot Manipulator Mechanism Design Based on Workspace Analysis | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 廖國基(Hsin-Chih Lin),黃振康(Shing-Hoa Wang),顏炳郎(Te-Cheng Su),吳剛智(Chiee-Young Chen) | |
| dc.subject.keyword | 機械手臂,工作空間,機構設計,解耦分析,端效器, | zh_TW |
| dc.subject.keyword | Robot Manipulator,Workspace,Mechanism Design,Decoupled Analysis,End Effector, | en |
| dc.relation.page | 128 | |
| dc.identifier.doi | 10.6342/NTU202200272 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-09 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0302202211545900.pdf | 3.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
