請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7976完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭振華 | |
| dc.contributor.author | Chih-Wei Lee | en |
| dc.contributor.author | 李志偉 | zh_TW |
| dc.date.accessioned | 2021-05-19T18:01:06Z | - |
| dc.date.available | 2026-02-04 | |
| dc.date.available | 2021-05-19T18:01:06Z | - |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-04 | |
| dc.identifier.citation | [1] F. Resch and e. H. Leutheusser, 'Le ressaut hydraulique: mesures de turbulence dans la region diphasique,' La Houille Blanche, pp. 279-293, 1972.
[2] T. E. McMahon and G. F. Hartman, 'Influence of cover complexity and current velocity on winter habitat use by juvenile coho salmon (Oncorhynchus kisutch),' Canadian Journal of Fisheries and Aquatic Sciences, vol. 46, pp. 1551-1557, 989. [3] J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, 'Fish exploiting vortices decrease muscle activity,' Science, vol. 302, pp. 1566-1569, 2003. [4] J. C. Liao, 'Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait,' Journal of Experimental Biology, vol. 207, pp. 3495-3506, 2004. [5] J. Bellingham and J. S. Willcox, 'Optimizing AUV oceanographic surveys,' in Autonomous Underwater Vehicle Technology, 1996. AUV'96.,Proceedings of the 1996 Symposium on, 1996, pp. 391-398. [6] A. Alvarez, A. Caiti, and R. Onken, 'Evolutionary path planning for autonomous underwater vehicles in a variable ocean,' Oceanic Engineering, IEEE Journal of, vol. 29, pp. 418-429, 2004. [7] H. Chanson, 'Air-water gas transfer at hydraulic jump with partially developed inflow,' Water Research, vol. 29, pp. 2247-2254, 1995. [8] G. B. Deane and M. D. Stokes, 'Scale dependence of bubble creation mechanisms in breaking waves,' Nature, vol. 418, pp. 839-844, 2002. [9] E. Delnoij, F. Lammers, J. Kuipers, and W. Van Swaaij, 'Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model,' Chemical Engineering Science, vol. 52, pp. 1429-1458, 1997. [10] K. Felton and E. Loth, 'Spherical bubble motion in a turbulent boundary layer,' Physics of Fluids (1994-present), vol. 13, pp. 2564-2577, 2001. [11] M. Maxey, B. Patel, E. Chang, and L.-P. Wang, 'Simulations of dispersed turbulent multiphase flow,' Fluid Dynamics Research, vol. 20, pp. 143-156, 1997. [12] O. Druzhinin and S. Elghobashi, 'Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation,' Physics of Fluids (1994-present), vol. 10, pp. 685-697, 1998. [13] D. Peregrine, 'Surf zone currents,' Theoretical and computational fluid dynamics, vol. 10, pp. 295-309, 1998. [14] J.-Y. Bouguet, 'Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm,' Intel Corporation, vol. 5, pp. 1-10, 2001. [15] I. M. Mazzitelli and D. Lohse, 'Lagrangian statistics for fluid particles and bubbles in turbulence,' New Journal of Physics, vol. 6, p. 203, 2004. [16] A. Talukder, S. Goldberg, L. Matthies, and A. Ansar, 'Real-time detection of moving objects in a dynamic scene from moving robotic vehicles,' in Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, 2003, pp. 1308-1313. [17] H. Chanson, 'Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects,' Environmental Fluid Mechanics, vol. 9, pp.125-142, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7976 | - |
| dc.description.abstract | 本研究描述仿生機器魚利用雙魚眼攝影機、電子羅盤以及加速度計在一個有水流的環境中,藉由調整姿態以達到節能的控制演算法。在實驗場地中,仿生機器魚在向前運動的過程中會遭受到水流,而造成多餘的能量消耗及控制上的困難。本文根據氣泡與水流流動的相對關係,利用影像處理演算法描述氣泡特徵並萃取出其資訊,透過校正後的雙魚眼攝影機估測仿生機器魚與氣泡的相對位置關係,再利用盧卡斯-卡納德移動物體追蹤演算法及影像金字塔,估測氣泡隨時間變化的位置資訊。另外整合來自電子羅盤及加速度計的資料,根據氣泡流動的觀測資訊,調整仿生機器魚的運動路徑及魚身與水流之攻角,以達到在水流中穩定控制的目的。最後,本論文展示了實驗數據,以驗證此視覺追蹤的回授控制演算法的可行性。
關鍵字:仿生機器魚、水流、氣泡、姿態控制、角點偵測、相機校正、雙眼視覺、盧卡斯-卡納德追蹤演算法、影像金字塔 | zh_TW |
| dc.description.abstract | This thesis describes the gesture control of a Biomimetic Autonomous Underwater Vehicle (BAUV) in a water flow by utilizing information derived from on board sensors of stereo cameras, a compass, and an accelerometer. In an alternating water flow, the BAUV suffers from drag forces and consumes more energy when it advances. The relationship between air bubbles and water flow is first discussed. The air bubble is detected by Harris corner. The relative position between air bubble and BAUV is estimated based on the calibrated stereo cameras and the bubble is tracked by using Lucas-Kanade method and image pyramid algorithm. By integrating observation information from air bubbles, heading angles and 3-axis accelerations from compass and the accelerometer, the BAUV adjusts its heading angle to optimize the gesture of control in the water flow. Finally, the control algorithm based on the computer vision algorithm is verified by experimental data. The control power consumed in the driving motors are calculated to compare the energy used in a water flow with and without gesture control.
Keywords: BAUV, water current, air bubbles, harris corner, camera calibration, stereo vision, Lucas-Kanade tracking algorithm, image pyramid | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T18:01:06Z (GMT). No. of bitstreams: 1 ntu-105-R02525028-1.pdf: 8676048 bytes, checksum: e94ebf768722853ca289575e5b3e963c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III List IV Figures List VII Tables List XVI Symbol List XVIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.3 Thesis Organization 4 Chapter 2 Hardware 5 2.1 The Hardware 6 Chapter 3 Guidance System 19 3.1 Air bubble dynamics 19 3.1.1 Air bubble dynamics 19 3.2 .Air bubble detection 22 3.2.1 Corner detection 22 3.2.2 Neighborhood process 25 3.2.3 Coordinate transformation 26 3.2.4 Radial distortion adjustment 29 3.2.5 Epipolar geometry 31 3.2.6 Stereo vision 36 3.2.7 Sum of absolute differences 38 3.3 Air bubble tracking 40 3.3.1 Lucas-Kanade optical method 40 3.3.2 Image pyramid 44 3.4 BAUV motion control 46 3.4.1 Performance of BAUV 46 3.4.2 Control System 52 Chapter 4 Experimental Results 60 4.1.1 Air Bubble Detection Results 60 4.1.2 Air Bubble Tracking Results 68 4.1.3 Air Bubbles Observation 75 4.1.4 BAUV heading angle control 80 4.1.5 Energy consumption 89 Chapter 5 Conclusion 99 References 100 Appendix 103 | |
| dc.language.iso | en | |
| dc.title | 以觀察氣泡運動輔助水下載具在水流中之姿態控制 | zh_TW |
| dc.title | Underwater Vehicle Gesture Control Aided by Air Bubble Motion Observation in a Water Flow | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱逢琛,李佳翰 | |
| dc.subject.keyword | 仿生機器魚,水流,氣泡,姿態控制,角點偵測,相機校正,雙眼視覺,盧卡斯-卡納德追蹤演算法,影像金字塔, | zh_TW |
| dc.subject.keyword | BAUV,water current,air bubbles,harris corner,camera calibration,stereo vision,Lucas-Kanade tracking algorithm,image pyramid, | en |
| dc.relation.page | 137 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-02-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-02-04 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 此日期後於網路公開 2026-02-04 | 8.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
