請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79769完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德(Chi-Te Liang) | |
| dc.contributor.author | Kai-Syang Hsu | en |
| dc.contributor.author | 徐凱祥 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:10:33Z | - |
| dc.date.available | 2021-11-10 | |
| dc.date.available | 2022-11-23T09:10:33Z | - |
| dc.date.copyright | 2021-11-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-26 | |
| dc.identifier.citation | 1. Holonyak, N., John Bardeen and the Point‐Contact Transistor. Physics Today, 1992. 45(4): p. 36-43. 2. Moore, G.E., Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter, 2006. 11(3): p. 33-35. 3. Shen, P.-C., et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021. 593(7858): p. 211-217. 4. Feynman, R.P., Simulating physics with computers. International Journal of Theoretical Physics, 1982. 21(6): p. 467-488. 5. Feynman, R.P., Feynman lectures on computation. 2018: CRC Press. 6. Loss, D. and D.P. DiVincenzo, Quantum computation with quantum dots. Physical Review A, 1998. 57(1): p. 120-126. 7. Arute, F., et al., Quantum supremacy using a programmable superconducting processor. Nature, 2019. 574(7779): p. 505-510. 8. Kane, B.E., A silicon-based nuclear spin quantum computer. Nature, 1998. 393(6681): p. 133-137. 9. Petta, J.R., et al., Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science, 2005. 309(5744): p. 2180. 10. Yang, C.H., et al., Dynamically controlled charge sensing of a few-electron silicon quantum dot. AIP Advances, 2011. 1(4): p. 042111. 11. West, A., et al., Gate-based single-shot readout of spins in silicon. Nature Nanotechnology, 2019. 14(5): p. 437-441. 12. Watson, T.F., et al., A programmable two-qubit quantum processor in silicon. Nature, 2018. 555(7698): p. 633-637. 13. Yang, C.H., et al., Operation of a silicon quantum processor unit cell above one kelvin. Nature, 2020. 580(7803): p. 350-354. 14. Petit, L., et al., Universal quantum logic in hot silicon qubits. Nature, 2020. 580(7803): p. 355-359. 15. Zwerver, A., et al., Qubits made by advanced semiconductor manufacturing. arXiv preprint arXiv:2101.12650, 2021. 16. 1956 Nobel Prize in Physics. [picture] 2021 [cited 2021 07/06]; Available from: <http://www.bell-labs.com/about/awards/1956-nobel-prize-physics/#gref>. 17. Kouwenhoven, L.P., D.G. Austing, and S. Tarucha, Few-electron quantum dots. Reports on Progress in Physics, 2001. 64(6): p. 701-736. 18. Beenakker, C.W.J., Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Physical Review B, 1991. 44(4): p. 1646-1656. 19. Meir, Y., N.S. Wingreen, and P.A. Lee, Transport through a strongly interacting electron system: Theory of periodic conductance oscillations. Physical Review Letters, 1991. 66(23): p. 3048-3051. 20. Averin, D.V., A.N. Korotkov, and K.K. Likharev, Theory of single-electron charging of quantum wells and dots. Physical Review B, 1991. 44(12): p. 6199-6211. 21. Fock, V., Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld. Zeitschrift für Physik, 1928. 47(5): p. 446-448. 22. Darwin, C.G., The Diamagnetism of the Free Electron. Mathematical Proceedings of the Cambridge Philosophical Society, 1931. 27(1): p. 86-90. 23. Baltes, H. and E. Hilf, A Review of Weyl's Problem: The Eigenvalue Distribution of the Wave Equation for Finite Domains and its Applications in the Physics of Small Systems. 1976. 24. Barnes, C., Quantum electronics in semiconductors. Part III lecture course, Cambridge University, 2005. 25. Kouwenhoven, L.P., et al., Electron Transport in Quantum Dots, in Mesoscopic Electron Transport, L.L. Sohn, L.P. Kouwenhoven, and G. Schön, Editors. 1997, Springer Netherlands: Dordrecht. p. 105-214. 26. Van Houten, H., C.W.J. Beenakker, and A.A.M. Staring, Coulomb-Blockade Oscillations in Semiconductor Nanostructures, in Single Charge Tunneling: Coulomb Blockade Phenomena In Nanostructures, H. Grabert and M.H. Devoret, Editors. 1992, Springer US: Boston, MA. p. 167-216. 27. Nazarov, Y.V., Measurement of discrete charge in the systems of ultra-small tunnel junctions. Journal of Low Temperature Physics, 1993. 90(1): p. 77-94. 28. Averin, D.V., Periodic conductance oscillations in the single-electron tunneling transistor. Physica B: Condensed Matter, 1994. 194-196: p. 979-980. 29. Schoeller, H. and G. Schön, Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction. Physical Review B, 1994. 50(24): p. 18436-18452. 30. Meirav, U., M.A. Kastner, and S.J. Wind, Single-electron charging and periodic conductance resonances in GaAs nanostructures. Physical Review Letters, 1990. 65(6): p. 771-774. 31. Dingle, R., et al., Electron mobilities in modulation‐doped semiconductor heterojunction superlattices. Applied Physics Letters, 1978. 33(7): p. 665-667. 32. Lin, B.J.F., et al., Mobility of the two‐dimensional electron gas in GaAs‐AlxGa1−xAs heterostructures. Applied Physics Letters, 1984. 45(6): p. 695-697. 33. Harrell, R.H., et al., Fabrication of high-quality one- and two-dimensional electron gases in undoped GaAs/AlGaAs heterostructures. Applied Physics Letters, 1999. 74(16): p. 2328-2330. 34. Kane, B.E., et al., Variable density high mobility two‐dimensional electron and hole gases in a gated GaAs/AlxGa1−xAs heterostructure. Applied Physics Letters, 1993. 63(15): p. 2132-2134. 35. Kane, B.E., L.N. Pfeiffer, and K.W. West, High mobility GaAs heterostructure field effect transistor for nanofabrication in which dopant‐induced disorder is eliminated. Applied Physics Letters, 1995. 67(9): p. 1262-1264. 36. Harrell, R.H., et al., Very high quality 2DEGS formed without dopant in GaAs/AlGaAs heterostructures. Journal of Crystal Growth, 1999. 201-202: p. 159-162. 37. Zwanenburg, F.A., et al., Silicon quantum electronics. Reviews of Modern Physics, 2013. 85(3): p. 961-1019. 38. Ruess, F.J., et al., Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy. Nano Letters, 2004. 4(10): p. 1969-1973. 39. He, Y., et al., A two-qubit gate between phosphorus donor electrons in silicon. Nature, 2019. 571(7765): p. 371-375. 40. Dutta, A., et al., Electron Transport in Nanocrystalline Si Based Single Electron Transistors. Japanese Journal of Applied Physics, 2000. 39(Part 1, No. 7B): p. 4647-4650. 41. Lauhon, L.J., et al., Epitaxial core–shell and core–multishell nanowire heterostructures. Nature, 2002. 420(6911): p. 57-61. 42. Notargiacomo, A., et al., Single-electron transistor based on modulation-doped SiGe heterostructures. Applied Physics Letters, 2003. 83(2): p. 302-304. 43. Matsuoka, H. and S.i. Kimura, Transport properties of a silicon single‐electron transistor at 4.2 K. Applied Physics Letters, 1995. 66(5): p. 613-615. 44. Simmel, F., et al., Statistics of the Coulomb-blockade peak spacings of a silicon quantum dot. Physical Review B, 1999. 59(16): p. R10441-R10444. 45. Angus, S.J., et al., Gate-Defined Quantum Dots in Intrinsic Silicon. Nano Letters, 2007. 7(7): p. 2051-2055. 46. Sze, S.M., Y. Li, and K.K. Ng, Physics of semiconductor devices. 2021: John wiley sons. 47. Landauer, R., Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1957. 1(3): p. 223-231. 48. Helmut Heinrich, G.B., Friedemar Kuchar, ed. Physics and Technology of Submicron Structures. 1 ed. 1988, Springer, Berlin, Heidelberg. 49. Beenakker, C.W.J. and H. van Houten, Quantum Transport in Semiconductor Nanostructures, in Solid State Physics, H. Ehrenreich and D. Turnbull, Editors. 1991, Academic Press. p. 1-228. 50. Deal, B.E., Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Transactions on Electron Devices, 1980. 27(3): p. 606-608. 51. Yoon, S. and M.H. White, Study of thin gate oxides grown in an ultra-dry/clean triple-wall oxidation furnace system. Journal of Electronic Materials, 1990. 19(5): p. 487-493. 52. Nordberg, E.P., et al., Enhancement-mode double-top-gated metal-oxide-semiconductor nanostructures with tunable lateral geometry. Physical Review B, 2009. 80(11): p. 115331. 53. Thorbeck, T. and N.M. Zimmerman, Formation of strain-induced quantum dots in gated semiconductor nanostructures. AIP Advances, 2015. 5(8): p. 087107. 54. Niquet, Y.-M., C. Delerue, and C. Krzeminski, Effects of Strain on the Carrier Mobility in Silicon Nanowires. Nano Letters, 2012. 12(7): p. 3545-3550. 55. Sun, Y., S.E. Thompson, and T. Nishida, Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 2007. 101(10): p. 104503. 56. Ghibaudo, G. and F. Balestra, Low temperature characterization of silicon CMOS devices. Microelectronics Reliability, 1997. 37(9): p. 1353-1366. 57. Lysenko, V.S., et al., Effect of oxide–semiconductor interface traps on low-temperature operation of MOSFETs. Microelectronics Reliability, 2000. 40(4): p. 735-738. 58. Clark, W.F., et al., Low temperature CMOS-a brief review. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992. 15(3): p. 397-404. 59. Adachi, S., GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications. Journal of Applied Physics, 1985. 58(3): p. R1-R29. 60. Lim, W.H., et al., Observation of the single-electron regime in a highly tunable silicon quantum dot. Applied Physics Letters, 2009. 95(24): p. 242102. 61. Balshaw, N., Practical cryogenics. 2001, Oxford Instruments Superconductivity Limited Oxon. 62. Oxford, Triton 200 Cryofree® Dilution. Refrigerator. Operator's Handbook. Oxford Instuments Nanoscience Limited. 63. Liang, C.-T., Electron and Composite Fermion Transport Properties of Low-dimensional GaAs/AlGaAs Microstructures, in Hughes Hall College. 1995, Cambridge. p. 170. 64. Glazman, L.I. and I.A. Larkin, Lateral position control of an electron channel in a split-gate device. Semiconductor Science and Technology, 1991. 6(1): p. 32-35. 65. Colinge, J.P., et al., Temperature effects on trigate SOI MOSFETs. IEEE Electron Device Letters, 2006. 27(3): p. 172-174. 66. Syong, W.-R., Electronic Transport Properties of Ultralow-hole-density Monolayer Epitaxial Graphene and Si-MOS Quantum Dots. 2020, National Taiwan University. 67. Abusch-Magder, D., et al., Spacing and width of Coulomb blockade peaks in a silicon quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 2000. 6(1): p. 382-387. 68. Hwang, G.J., et al. A Simple Method for Fabricating Silicon Single Electron Devices for Metrology Applications. in 2004 Conference on Precision Electromagnetic Measurements. 2004. 69. Lim, W.H., et al., Spin filling of valley–orbit states in a silicon quantum dot. Nanotechnology, 2011. 22(33): p. 335704. 70. Rokhinson, L.P., et al., Spin transitions in a small Si quantum dot. Physical Review B, 2001. 63(3): p. 035321. 71. Angus, S.J., et al., A silicon radio-frequency single electron transistor. Applied Physics Letters, 2008. 92(11): p. 112103. 72. Elzerman, J.M., et al., Single-shot read-out of an individual electron spin in a quantum dot. Nature, 2004. 430(6998): p. 431-435. 73. Koppens, F.H.L., et al., Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 2006. 442(7104): p. 766-771. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79769 | - |
| dc.description.abstract | 量子電腦具有能夠解決即使是當今最先進的超級電腦也無法解決的複雜問題的潛力,藉由蓬勃發展的半導體產業,人類在半導體製程技術上已經能夠製作微小的結構,因此矽基金屬氧化物半導體場效電晶體 (金氧半) 量子點中的自旋量子位元也提供了一個未來運行大型量子電腦的基礎。 本論文描述了我們的砷化鎵鋁/砷化鎵異質結構量子點以及金氧半量子點的發展,藉由稀釋冷凍機在毫克耳文溫度下研究了不同樣品之電性,樣品設計可分為一個以砷化鎵為基礎的量子點、一個雙層金氧半、兩個三層金氧半量子點和一個三層金氧半的雙量子點,本論文中在探討電性後可以得到重要的相關參數,例如臨界電壓和次臨界斜率,量測庫侖障礙和隨後的偏電壓能譜術可以檢查是否已經有效的性形成的量子點,並得到有關量子點的重要信息,例如量子點的大小、閘極空乏能力和量子點電容,透過低溫系統能夠精準控制溫度的能力,隨後也測量了單電子量子穿隧峰和溫度的關係,用以檢查峰形因為熱而展寬的影響,這再度提供了閘極空乏能力以及樣品的有效電子溫度。 此研究的測量結果證實了我們多層元件結構的完整性和形成量子點的能力,此外,本主題還需要進一步研究,增加量測結果的訊號雜訊比以實現完整的元件功能並成功達成高準確度的讀取。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:10:33Z (GMT). No. of bitstreams: 1 U0001-1608202116254300.pdf: 9563706 bytes, checksum: 74ec45aa96d545a556980f5066cea250 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 # 摘要 i Abstract ii Preface iii Publications v Contents vii Chapter 1 Introduction 1 1.1 Preamble 2 1.2 Thesis outline 4 Chapter 2 Literature Review and Background 7 2.1 Electron Transport in Quantum Dots 8 2.1.1 Constant Interaction Model 9 2.1.2 Coulomb Blockade and Single Electron Tunneling 11 2.1.3 Bias Spectroscopy and Coulomb Diamonds 14 2.1.4 Lineshape of Conductance Oscillations 18 2.2 Gallium Arsenide Quantum Dots Devices 20 2.2.1 Modulation Doped GaAs heterostructure 20 2.2.2 Undoped GaAs heterostructure 21 2.3 Silicon-based Quantum Dots 24 2.3.1 Dopants, Nanocrystals, and Nanowires 25 2.3.2 Si/SiGe heterostructure and Si MOS Quantum Dots 26 2.4 Mesoscopic Properties of Quantum Dots 29 2.4.1 Mesoscopic Transport 29 2.4.2 Trapped Charges 31 2.4.3 Strain-Induced Unintentional Quantum Dots 32 2.4.4 Cryogenic Environment 33 Chapter 3 Operation Principles of Quantum Dot Devices 35 3.1 Device Designs 36 3.1.1 Architecture 36 3.1.2 Silicon MOSFET Nanofabrication Procedure 41 3.1.3 Device Packaging and Bonding 42 3.2 Dilution refrigerator operation 44 3.2.1 Dilution Refrigerator 44 3.3 Electrical setup and Measurement methods 46 3.3.1 Gate Leakage 47 3.3.2 Global Turn On and Pinch Off 48 3.3.3 Characterization and Tuning 49 3.3.4 Bias Spectroscopy 50 3.3.5 Temperature Dependence 51 Chapter 4 Characterization of Modulation-doped AlGaAs/GaAs Quantum Dot 53 4.1 GaAs quantum dot 54 4.1.1 Pinch Off 54 4.1.2 Coulomb Blockade 55 4.1.3 Bias spectroscopy 58 Chapter 5 Electrostatically-Defined Quantum Dot with Silicon MOSFET Designs 61 5.1 Bi-layer Silicon Quantum Dot 62 5.1.1 On Off 62 5.1.2 Pinch Off 64 5.1.3 Characterization 65 5.1.4 Coulomb Blockade 66 5.1.5 Bias Spectroscopy 68 5.1.6 Temperature Dependence 71 5.2 Tri-layer Si Quantum Dot 1 72 5.2.1 On Off 72 5.2.2 Pinch Off 73 5.3 Tri-layer Si Quantum Dot 2 75 5.3.1 On Off 75 5.3.2 Pinch Off 76 5.3.3 Characterization 77 5.3.4 Coulomb Blockade 78 5.3.5 Bias Spectroscopy 79 5.3.6 Temperature Dependence 82 5.4 Tri-layer Si Double Quantum Dot 83 5.4.1 On Off 83 5.4.2 Pinch Off 84 5.4.3 Coulomb Blockade 86 Chapter 6 Summary, Discussions, and Outlook 87 6.1 Achievements and Conclusions 88 6.2 Directions for Future Work 89 6.2.1 Design and Measurement Method Optimization 89 6.2.2 Future Endeavors 90 Appendix A: Python code 91 Appendix B: Instrument Setup in detail 92 Appendix C: Fabrication Recipe 95 List of Abbreviations 98 List of Figures 99 List of Tables 106 Bibliography 107 " | |
| dc.language.iso | en | |
| dc.subject | 砷化鎵鋁/砷化鎵異質結構 | zh_TW |
| dc.subject | 矽基量子點 | zh_TW |
| dc.subject | 庫倫障礙 | zh_TW |
| dc.subject | AlGaAs/GaAs heterostructure | en |
| dc.subject | Coulomb blockade | en |
| dc.subject | silicon quantum dot | en |
| dc.title | 半導體自旋量子位元中砷化鎵鋁/砷化鎵量子點及 矽基金屬氧化物半導體量子點之低溫電性研究 | zh_TW |
| dc.title | Cryogenic Electronic Properties of AlGaAs/GaAs and Silicon MOS Quantum Dots for Spin-Based Qubits | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 管希聖(Hsin-Tsai Liu),李峻霣(Chih-Yang Tseng) | |
| dc.subject.keyword | 砷化鎵鋁/砷化鎵異質結構,矽基量子點,庫倫障礙, | zh_TW |
| dc.subject.keyword | AlGaAs/GaAs heterostructure,silicon quantum dot,Coulomb blockade, | en |
| dc.relation.page | 110 | |
| dc.identifier.doi | 10.6342/NTU202102400 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202116254300.pdf | 9.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
