Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79733
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-John Chang)
dc.contributor.authorTing-Hsuan Chenen
dc.contributor.author陳廷軒zh_TW
dc.date.accessioned2022-11-23T09:09:11Z-
dc.date.available2021-11-03
dc.date.available2022-11-23T09:09:11Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-08-29
dc.identifier.citation1. Al-Mezeini, N. K., Oukil, A., Al-Ismaili, A. M. (2020). Investigating the efficiency of greenhouse production in Oman: A two-stage approach based on Data Envelopment Analysis and double bootstrapping. Journal of Cleaner Production, 247, 119160. 2. Ammar, M. E., Davies, E. G. (2019). On the accuracy of crop production and water requirement calculations: Process-based crop modeling at daily, semi-weekly, and weekly time steps for integrated assessments. Journal of environmental management, 238, 460-472. 3. Bottcher, R. W., Baughman, G. R., Gates, R. S., Timmons, M. B. (1991). Characterizing erficiency of misting systems for poultry. Transactions of the ASAE, 34(2), 586-0590. 4. Chang, F. J., Tsai, M. J. (2016). A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques. Journal of Hydrology, 535, 256-269. 5. Chang, F. J., Chang, L. C., Kao, H. S., Wu, G. R. (2010). Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. Journal of Hydrology, 384(1-2), 118-129. 6. Chang, L. C., Shen, H. Y., Chang, F. J. (2014). Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. Journal of Hydrology, 519, 476-489. 7. Chen, I. T., Chang, L. C., Chang, F. J. (2018). Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps. Journal of Hydrology, 556, 131-142. 8. Chen, J., Yang, J., Zhao, J., Xu, F., Shen, Z., Zhang, L. (2016). Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method. Neurocomputing, 174, 1087-1100. 9. Chen, Y. H., Chang, F. J. (2009). Evolutionary artificial neural networks for hydrological systems forecasting. Journal of Hydrology, 367(1-2), 125-137. 10. Cheng, S. T., Tsai, W. P., Yu, T. C., Herricks, E. E., Chang, F. J. (2018). Signals of stream fish homogenization revealed by AI-based clusters. Scientific reports, 8(1), 1-11. 11. Chiang, Y. M., Chang, F. J., Jou, B. J. D., Lin, P. F. (2007). Dynamic ANN for precipitation estimation and forecasting from radar observations. Journal of Hydrology, 334(1-2), 250-261. 12. El-Gafy, I. (2017). Water–food–energy nexus index: analysis of water–energy–food nexus of crop’s production system applying the indicators approach. Applied Water Science, 7(6), 2857-2868. 13. Esmaeli, H., Roshandel, R. (2020). Optimal design for solar greenhouses based on climate conditions. Renewable Energy, 145, 1255-1265. 14. Forrester, J. W. (1997). Industrial dynamics. Journal of the Operational Research Society, 48(10), 1037-1041. 15. Forrester, J. W. (1993). System dynamics and the lessons of 35 years. A systems-based approach to policymaking, pp. 199-240. 16. Forrester, Jay W. (1958). Industrial Dynamics--A Major Breakthrough for Decision Makers. Harvard Business Review, Vol. 36, No. 4, pp. 37-66. 17. Fox, J. A., Adriaanse, P., Stacey, N. T. (2019). greenhouse energy management: The thermal interaction of greenhouses with the ground. Journal of Cleaner Production, 235, 288-296. 18. Golzar, F., Heeren, N., Hellweg, S., Roshandel, R. (2018). A novel integrated framework to evaluate greenhouse energy demand and crop yield production. Renewable and Sustainable Energy Reviews, 96, 487-501. 19. Graamans, L., Baeza, E., Van Den Dobbelsteen, A., Tsafaras, I., Stanghellini, C. (2018). Plant factories versus greenhouses: Comparison of resource use efficiency. Agricultural Systems, 160, 31-43. 20. Hassoun, M. H. (1995). Fundamentals of artificial neural networks. MIT press. 21. Hu, J. H., Tsai, W. P., Cheng, S. T., Chang, F. J. (2020). Explore the relationship between fish community and environmental factors by machine learning techniques. Environmental research, 184, 109262. 22. Joudi, K. A., Farhan, A. A. (2015). A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse. Energy Conversion and Management, 91, 76-82. 23. Kamp, P. G. H., G. J. Timmerma. (1996). Computerized Environmental control in greenhouse.IPC-Plant.Netherlands. 24. Kao, I. F., Zhou, Y., Chang, L. C., Chang, F. J. (2020). Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology, 583, 124631. 25. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S. (2017). Self-normalizing neural networks. arXiv preprint arXiv:1706.02515. 26. Lee, C. S., Hoes, P., Cóstola, D., Hensen, J. L. M. (2019). Assessing the performance potential of climate adaptive greenhouse shells. Energy, 175, 534-545. 27. Liang, M. H., Chen, L. J., He, Y. F., Du, S. F. (2018). Greenhouse temperature predictive control for energy saving using switch actuators. IFAC-PapersOnLine, 51(17), 747-751. 28. Lin, D., Zhang, L., Xia, X. (2020). Hierarchical model predictive control of Venlo-type greenhouse climate for improving energy efficiency and reducing operating cost. Journal of Cleaner Production, 121513. 29. Ma, D., Carpenter, N., Maki, H., Rehman, T. U., Tuinstra, M. R., Jin, J. (2019). Greenhouse environment modeling and simulation for microclimate control. Computers and Electronics in Agriculture, 162, 134-142. 30. Mannan, M., Al-Ansari, T., Mackey, H. R., Al-Ghamdi, S. G. (2018). Quantifying the energy, water and food nexus: A review of the latest developments based on life-cycle assessment. Journal of Cleaner Production, 193, 300-314. 31. Nicolosi, G., Volpe, R., Messineo, A. (2017). An innovative adaptive control system to regulate microclimatic conditions in a greenhouse. Energies, 10(5), 722. 32. Riahi, J., Vergura, S., Mezghani, D., Mami, A. (2020). Intelligent Control of the Microclimate of an Agricultural Greenhouse Powered by a Supporting PV System. Applied Sciences, 10(4), 1350. 33. Salmoral, G., Yan, X. (2018). Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resources, Conservation and Recycling, 133, 320-330. 34. Sathya, R., Abraham, A. (2013). Comparison of supervised and unsupervised learning algorithms for pattern classification. International Journal of Advanced Research in Artificial Intelligence, 2(2), 34-38. 35. Sayadi, A., Monjezi, M., Talebi, N., Khandelwal, M. (2013). A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak. Journal of Rock Mechanics and Geotechnical Engineering, 5(4), 318-324. 36. Sethi, V. P. (2009). On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation. Solar Energy, 83(1), 21-38. 37. Smajgl, A., Ward, J., Pluschke, L. (2016). The water–food–energy Nexus–Realising a new paradigm. Journal of Hydrology, 533, 533-540. 38. Taki, M., Mehdizadeh, S. A., Rohani, A., Rahnama, M., Rahmati-Joneidabad, M. (2018). Applied machine learning in greenhouse simulation; new application and analysis. Information processing in agriculture, 5(2), 253-268. 39. Uen, T. S., Chang, F. J., Zhou, Y., Tsai, W. P. (2018). Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Science of the Total Environment, 633, 341-351. 40. Van Beveren, P. J. M., Bontsema, J., Van Straten, G., Van Henten, E. J. (2015). Minimal heating and cooling in a modern rose greenhouse. Applied energy, 137, 97-109. 41. Vanthoor, B. H. E., Stanghellini, C., Van Henten, E. J., De Visser, P. H. B. (2011). A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosystems Engineering, 110(4), 363-377 42. Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569-582. 43. Yu, H., Chen, Y., Hassan, S. G., Li, D. (2016). Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO. Computers and Electronics in Agriculture, 122, 94-102. 44. Zhang, J., Campana, P. E., Yao, T., Zhang, Y., Lundblad, A., Melton, F., Yan, J. (2018). The water-food-energy nexus optimization approach to combat agricultural drought: a case study in the United States. Applied Energy, 227, 449-464. 45. Zhang, X., Vesselinov, V. V. (2017). Integrated modeling approach for optimal management of water, energy and food security nexus. Advances in Water Resources, 101, 1-10. 46. Zhou, Y., Chang, F. J., Chang, L. C., Lee, W. D., Huang, A., Xu, C. Y., Guo, S. (2020). An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies. Applied Energy, 275, 115389. 47. Zhou, Y., Chang, L. C., Uen, T. S., Guo, S., Xu, C. Y., Chang, F. J. (2019). Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus. Applied Energy, 238, 668-682. 48. Zhou, Y., Guo, S., Chang, F. J. (2019). Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts. Journal of hydrology, 570, 343-355. 49. 方煒. (1995). 溫室蒸發冷卻系統降溫效果量化指標之建立. 農業機械學刊, 4(2), 15-25. 50. 吳柏青, 周立強, 1990, 半開放型園藝栽培設施噴霧降溫系統, 興大農業Issue 33, Page(s) 24-29. 51. 李聲謙, 張金元, 李文汕, 黃裕益. (2006). 應用相異控制策略對溫室內噴霧降溫效能影響之探討. 農業機械學刊, 15(4), 23-36. 52. 徐嘉徽. (2020). 使用機器學習技術預測溫室室內環境以實現溫室環境之自動控制. 臺灣大學生物環境系統工程學研究所學位論文. 53. 張金元. (2005). 噴霧程序變異控制降溫系統應用於開放式溫室內熱環境改善之研究 (Doctoral dissertation, 撰者). 54. 張斐章, 張麗秋, (2015). 類神經網路導論原理與應用, 滄海書局. 55. 許涵鈞, 鍾瑞永, 劉依昌. (2018). 臺荷示範溫室小果番茄生產評估. 臺南區農業改良場研究彙報, (71), 46-56. 56. 陳加忠, 1998, 溫室內蒸發冷卻之微氣候梯度模式, 《農林學報》, 第47卷, 第4期, pp.93-113. 57. 陳思如, 李國譚, 葉德銘. (2012). 鈣的吸收, 運移及分配對番茄果實尻腐病之影響. 高雄區農業改良場研究彙報, 23(2), 10-15. 58. 黃裕益. (1999). 噴霧冷卻法應用於臺灣地區塑膠布溫室內降溫之研究. 農業機械學刊, 8(4), 17-27. 59. 劉依昌, 黃瑞彰, 蔡孟旅, 黃秀雯. (2016). 小果番茄設施栽培及健康管理技術. 臺南區農業改良場技術專刊, (164), 3-47. 60. 薛义霞, 李亚灵, 温祥珍. (2010). 空气湿度对高温下番茄光合作用及坐果率的影响. 园艺学报, 37(3), 397-404.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79733-
dc.description.abstract溫室耕種最主要的優勢係藉由建築特性及環控策略,以維持內部環境穩定,達到產量最佳化,然而其相較於傳統露地栽培亦會消耗更多資源,因此須以水-能源-糧食鏈結(Water-Energy-Food Nexus)之管理為出發點,對不同環控策略進行量化與效益分析,方能妥善利用資源。為此,本研究先以質量守恆與能量守恆兩個公式,建置一套能推估下一小時溫室內溫度與相對濕度的物理模式,用以模擬噴霧後溫室內之環境,並以彰化縣伸港鄉溫室內物聯網設備收集之歷史監測資料,驗證物理模式的準確度與可靠度。其驗證流程為在N=0時(N代表單位為一小時之時距間隔),以第一筆資料中的溫室內溫度與相對濕度,當作模式t時刻溫室內溫度與相對濕度的初始值,再引入t+N時刻之溫室外溫度、溫室外相對濕度、溫室外日照量、風速與風向,推估t+N+1時刻的溫室內溫度與相對濕度,最後將此t+N+1的溫室內溫度與相對溼度,引入物理模式做為推進至下一時刻(N=N+1)的溫室內溫度與相對溼度起始值,重複此步驟直至觀測資料全數跑完。分析結果顯示了,物理模式在推估下一小時溫室內溫度與相對濕度的決定係數值為0.79及0.80,均方根誤差值則為1.89℃及8.17%,這代表物理模式在推估溫室內溫度與相對溼度的變化上,具有良好的精確度與可靠度。 接著建置一套能預測下一小時溫室內溫度與相對濕度的類神經網路(ANN)預測模式,並以同一批監測資料驗證模式的準確度與可靠度。其驗證流程為在N=0時,以t+N時刻的溫室外溫度、溫室內溫度、溫室外相對濕度、溫室內相對濕度、溫室外日照量以及風速等六項因子作為輸入因子,引入倒傳遞類神經網路預測t+N+1時刻的溫室內溫度與相對溼度,完成之後推進至下一時刻(N=N+1),重複此步驟直至觀測資料全數跑完。分析結果顯示了,ANN預測模式在預測下一小時溫室內溫度與相對濕度的決定係數值R2可達0.82及0.88,均方根誤差值RMSE則為1.55℃及4.19%,這顯示了預測模式在預測溫室內溫度與相對溼度的變化上,具有良好的的精確度與可靠度,且表現優於物理模式。而因本研究因屬研發性質,尚無各時刻之噴霧量、噴霧後溫室內溫度與相對溼度的實際監測資料,導致預測模式無法直接計算出各時刻所需噴霧量,以及噴霧後溫室內溫度與相對溼度,故需將預測模式與物理模式結合,先以預測模式得出下一小時溫室內溫度與相對溼度的預測值後,再以物理模式計算出能將預測值改變至適合植物生長環境所需的噴霧量,以及噴霧後的溫室內溫度與相對溼度。最後一步才會是探討智慧噴霧系統與傳統噴霧方式的噴霧效果,以及噴霧前後的資源消耗差異。 本研究以彰化縣伸港鄉占地面積1560平方公尺的強固型開頂溫室,時間範圍為2019年5月20日00:00至2019年7月20日23:00共1488筆之溫室歷史監測資料,模擬溫室內種植番茄時所需之噴霧方式。根據研究結果顯示,傳統噴霧方式與智慧噴霧系統皆對溫室有良好的環控能力,惟傳統噴霧方式需消耗129478公斤的水及90度電,而智慧噴霧系統則只需42962公斤的水及29.8度電,省水率及省電率均高達66.8%; 此一結果顯示本研究所發展的智慧噴霧系統,有助於溫室內環境的自動控制且能省水及省電,具有極大的應用效益,同時亦補強了大多數溫室環境自動控制的相關研究,對於資源消耗著墨過少的問題。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:09:11Z (GMT). No. of bitstreams: 1
U0001-2008202112514800.pdf: 5086812 bytes, checksum: 8e85bc4d1c725b063d05ded7e64d4882 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents謝誌 I 摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 XI 第一章、前言 1 1.1 研究動機 1 1.2 研究目的 2 1.3 章節架構概述 2 第二章、文獻回顧 4 2.1 水-糧食-能源鏈結之相關研究 4 2.2 結合模擬或預測方法於溫室自動環控之相關研究 5 2.2.1系統動態學(System dynamics) 5 2.2.2 類神經網路 6 2.3 溫室噴霧環控之相關研究 7 2.4 溫室資源消耗與效益評估之相關研究 7 第三章、理論概述 9 3.1 溫室智慧噴霧系統簡介 9 3.2 溫室內環境之物理模式建置 9 3.2.1 物理模式推估溫室內t+1時刻相對溼度 9 3.2.2 物理模式推估溫室內t+1時刻溫度與相對溼度 13 3.2.3 噴霧前溫室內相對溼度與溫度之系統動態 17 3.2.4 物理模式推估溫室內溫度與相對溼度之流程 19 3.3 溫室內環境之預測模式建置 19 3.3.1 類神經網路概述 20 3.3.2 倒傳遞類神經網路 22 3.4 傳統噴霧方式 25 3.4.1 物理模式模擬傳統噴霧 26 3.4.2 霧粒完全蒸發時間 28 3.5 智慧噴霧系統之建置 30 第四章、研究案例 32 4.1 研究區域 32 4.2 資料蒐集 32 4.3 植物生長條件 34 4.4 研究流程 35 4.5 模式評估指標 36 第五章、結果與討論 38 5.1 物理模式推估值與觀測值之比較 38 5.2 預測模式預測值與觀測值比較 43 5.2.1 輸入因子組合篩選 44 5.2.2 模式神經元個數 47 5.2.3 模式批次數量 48 5.2.4 預測模式預測值與觀測值比較 48 5.3 傳統噴霧方式噴霧前後溫度模擬值比較 54 5.4 智慧噴霧模式噴霧前後溫度模擬值比較 56 5.5 資源消耗評估 58 第六章、研究結論與建議 63 6.1 研究結論 63 6.2 研究建議 64 參考文獻 65 附錄 72
dc.language.isozh-TW
dc.subject物聯網zh_TW
dc.subject溫室zh_TW
dc.subject機器學習zh_TW
dc.subject水-能源-糧食鏈結zh_TW
dc.subjectWater-Food-Energy Nexus (WFE Nexus)en
dc.subjectInternet of Things (IoT)en
dc.subjectGreenhouseen
dc.subjectMachine learningen
dc.title以機器學習技術建置溫室智慧噴霧系統zh_TW
dc.titleBuild an intelligent greenhouse spraying-system using machine learning techniquesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡明哲(Hsin-Tsai Liu),張麗秋(Chih-Yang Tseng),黃文政,姚銘輝
dc.subject.keyword水-能源-糧食鏈結,溫室,機器學習,物聯網,zh_TW
dc.subject.keywordWater-Food-Energy Nexus (WFE Nexus),Greenhouse,Machine learning,Internet of Things (IoT),en
dc.relation.page74
dc.identifier.doi10.6342/NTU202102542
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-2008202112514800.pdf4.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved