請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79732完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鴻基(Hung-Chi Kuo) | |
| dc.contributor.author | Pin-Chun Huang | en |
| dc.contributor.author | 黃品鈞 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:09:09Z | - |
| dc.date.available | 2021-08-24 | |
| dc.date.available | 2022-11-23T09:09:09Z | - |
| dc.date.copyright | 2021-08-24 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-20 | |
| dc.identifier.citation | Arfken, G.B., and H. J. Weber, 2001: Mathematical methods for physicists (5th Ed.) Harcourt Academic Press, 1112 pp. Charney, J. G., M. E. Stern, 1962: On the Stability of Internal Baroclinic Jets in a Rotating Atmosphere. J. Atmos. Sci. 19 (2): 159–172. Duan, A. M., and G. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim. Dyn. 24, 793–807. Ertel, H., 1942: Ein neuer hydrodynamische wirbdsatz. Metror.Z. Braunschweig., 59, 33–49. Fulton, S. R., and W. H. Schubert, 1985: Vertical normal mode transforms: Theory and application. Mon. Wea. Rev., 113,647–658. Ge, J., Q. You, Y. Zhang, 2019. Effect of Tibetan Plateau heating on summer extreme precipitation in eastern China. Atmos. Res. 218, 364–371. Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presents of diabatic heating and friction or other forces. Journal of the Atmos-pheric Sciences, 44:828~841. He, H. J., W. McGinnis, Z. Song, M. Yanai, 1987: Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev. 115:1966–1995. Hoskins, B. J., 2015: Potential vorticity and the PV perspective. Adv. Atmos. Sci., 32, 2–9. Hoskins, B. J., M. Mclntyre, and A. Robertson, 1985: On the use and significance of isen-tropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946. Hsu, C. J., and R. A. Plumb, 2000: Nonaxisymmetric thermally driven circulations and up-per-tropospheric monsoon dynamics, J. Atmos. Sci.,57, 1255 –1276. Liu, Y. M., G. X. Wu, H. Liu, P. Liu, 2001: Condensation heating of the Asian summer mon-soon and the subtropical anticyclone in the Eastern Hemisphere. Clim. Dyn. 17:327–338. Lorenz, E. N., 2006: Reflections on the Conception, Birth, and Childhood of Numerical Weather Prediction, Annu. Rev. Earth Planet. Sci., Vol. 34, 37-45. Matsuno, T., 1966: Quasi-Geostrophic Motions in the Equatorial Area, J. Meteorol. Soc. Jpn., 44, 25–43. Ning, L., J. Liu, and B. Wang, 2017: How does the South Asian High influence extreme precipitation over eastern China? J. Geophys. Res. Atmos. 122, 4281–4298. Rodwell, M. J., B. J. Hoskins, 1996: Monsoon and the dynamics of deserts. Q. J. R. Meteorol. Soc. 122:1385–1404. ——, ——, 2001: Subtropical anticyclones and summer monsoons. J. Clim. 14:3192–3211. Rossby, C. G., Collaborators, 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. Journal of Marine Research. 2 (1): 38–55. Schubert, W. H., R. K. Taft, L. G. Silvers, 2009: Shallow water quasi-geostrophic theory on the sphere. J. Adv. Model. Earth Syst., 1(2), doi:10.3894/JAMES.2009.1.2. Verkley, W. T. M., 2009: A balanced approximation of the one layer shallow-water equations on a sphere. J. Atmos. Sci., 66, 1735–1748. Wu, G., A. Duan, Y. Liu et al., 2015; Tibetan Plateau climate dynamics: recent research progress and outlook. National Science Review, 2, 100–116. Yanai, M., S. Esbensen, J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 30,611–627. Yanai, M., and C. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev. 122:305–323. Zhang, Q., and Y. Qian, 2000: Interannual and Interdecadal variations of the South Asia High (in Chinese), Chin. J. Atmos. Sci., 24, 67–7 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79732 | - |
| dc.description.abstract | 南亞高壓為夏季活躍於中緯度歐亞大陸對流層頂之高壓系統。青藏高原之非絕熱加熱與其形成和維持息息相關,多年來有大量研究探討青藏高原的加熱與南亞高壓強度以及其東西震盪之關聯性。然而,前人之大量研究針對南亞高壓之位勢高度進行統計分析,而甚少探討南亞高壓的位渦性質。 本研究試圖建立南亞高壓的位渦觀點。位渦同時包含了動量與質量場資訊,對於中大尺度天氣系統是很好的診斷工具。參考Schubert et al. (2009)所提出的準地轉全球淺水位渦模式,我們建立了利用類球諧函數作為基底的理想模式。該模式成功解決了在赤道無科氏力而無法使用準地轉近似的問題。我們首先簡介位渦的性質,包含了其守恆性與反演定律,並比較傳統上f-plane與β-plane近似下之位渦與此全球模式之位渦的異同。 我們利用ECMWF的再分析資料(ERA5)計算青藏高原與東亞季風區的非絕熱加熱,以及由此所生成之負位渦異常。我們參考了Hsu and Plumb (2000)的做法,利用理想模式,探討了在有背景流的狀況下,在青藏高原施加固定的熱源,考慮非線性作用時的渦漩洩離過程。該過程是造成南亞高壓東西不對稱性與兩個中心的原因;一個中心位在青藏高原上方,另一個則在伊朗高原上方。在150 hPa位勢高度圖上,僅能觀察到中心的東西震盪,而利用370 K之等熵位渦圖分析,則可以看到明顯的渦漩洩離過程。 特別地,研究者們亦關注南亞高壓之強度與中心位置如何影響東亞地區之降雨。然而,對於東亞地區之降雨如何反過來影響南亞高壓之強度,卻甚少有研究進行探討。我們針對1979-2020夏季之月平均370 K等熵面位渦圖做正交經驗函數分析,以尋找南亞高壓位渦的年變異情形。結果顯示,其第一個模之變異度最大值並不在南亞高壓的本體位置,而是自東亞季風區延伸至南亞的帶狀圖形。我們推測東亞地區的降雨是造成南亞高壓位渦年變化的主因之一。東亞地區的降雨與南亞高壓位渦之變異度在統計上亦有相關性。此為前人研究所未觀察到之現象,我們推測是因為位渦場的資訊在低緯度地區無法反映在質量場的變化上。 在理想模式的實驗設計上,我們將原先渦漩逸離實驗之青藏高原熱源東側加上強度強但空間尺度較小之熱源。結果顯示東亞季風區形成之位渦會被併入青藏高原的主位渦之中,並造成整體位渦之增強,增加之形狀與正交經驗函數分析之第一個模相似。由於能反映出低緯度地區質量場看不到的資訊,我們認為此全球淺水位渦模式極其適用於亞熱帶地區的氣候診斷。同時,亦發現到東亞地區增加的負渦度異常會拖慢整體渦漩逸離之速度。儘管我們無法從南亞高壓月平均的東西偏移和降雨量找出相關係數,但值得注意的是,強降雨年的南亞高壓月平均高壓中心都不位於西邊。 我們還發現到南亞高壓的中心位置與高層空氣沉降有密切的關係,無論中心偏西、偏東或是雙中心,都可以看到高壓東側會有上升運動而西側有明顯的沉降運動。此現象可能可以更進一步改良「乾者越乾,濕者越濕」之季風-沙漠耦合現象,值得更進一步的探討。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:09:09Z (GMT). No. of bitstreams: 1 U0001-2008202113252800.pdf: 6064199 bytes, checksum: 02ab252dbef099687e6f404ad1c1ed40 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 II 誌 謝 III 摘 要 IV Abstract VI Contents VIII List of Figures X List of Tables XIII 1. Introduction 1 2. Introduction to QGPV Dynamics 5 2.1 Shallow Water Quasi-Geostrophic Theory 6 2.2 Global Quasi-Geostrophic Theory 10 2.2.2 Validity of the Global SWQG Theory 12 2.2.3 Physical Explanation 15 2.2.4 Solution with Spheroidal Harmonics 17 3. The SW-QGPV Model on the Sphere 20 3.1 Model Construction 20 3.3 Model Performance 24 3.3.2 Linear Rossby Wave Propagation 26 3.4 Model with Topography 36 3.5 Usage of the global SWGQ model 39 4. The PV perspective of South Asian High 40 4.1 Introduction and Methodology 40 4.2 The Heating Structure of SAH 41 4.3 The PV forcing of SAH 44 4.4 The Vortex-Shedding Process and SAH 48 4.5 SAH and the Precipitation of Yangzi River Valley 54 4.6 SAH and the Vertical Motion above Eurasian 60 5. Conclusion 62 Reference 65 Appendix A. Spherical and Spheroidal Harmonics 68 Appendix B. Programming of the Global SWQG model 72 | |
| dc.language.iso | en | |
| dc.subject | 渦漩逸離 | zh_TW |
| dc.subject | 南亞高壓 | zh_TW |
| dc.subject | 淺水方程 | zh_TW |
| dc.subject | 準地轉理論 | zh_TW |
| dc.subject | 位渦 | zh_TW |
| dc.subject | 東亞季風 | zh_TW |
| dc.subject | South Asian high | en |
| dc.subject | vortex-shedding | en |
| dc.subject | Asian summer monsoon | en |
| dc.subject | potential vorticity | en |
| dc.subject | quasi-geostrophic theory | en |
| dc.subject | shallow water system | en |
| dc.title | 南亞高壓的準地轉位渦觀點 | zh_TW |
| dc.title | Quasi-Geostrophic Potential Vorticity Perspective on South Asian High | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊明仁(Hsin-Tsai Liu),簡芳菁(Chih-Yang Tseng),陳世楠 | |
| dc.subject.keyword | 南亞高壓,淺水方程,準地轉理論,位渦,東亞季風,渦漩逸離, | zh_TW |
| dc.subject.keyword | South Asian high,shallow water system,quasi-geostrophic theory,potential vorticity,Asian summer monsoon,vortex-shedding, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202102543 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2008202113252800.pdf | 5.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
