請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79724完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單秋成(Chow-Shing Shin) | |
| dc.contributor.author | Tzu-Wei Li | en |
| dc.contributor.author | 李梓維 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:08:52Z | - |
| dc.date.available | 2021-09-01 | |
| dc.date.available | 2022-11-23T09:08:52Z | - |
| dc.date.copyright | 2021-09-01 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-28 | |
| dc.identifier.citation | Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58. Das, N.C., et al., Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polymer Engineering Science, 2009. 49(8): p. 1627-1634. Chang, L., et al., Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites. Journal of Materials Science, 2009. 44(15): p. 4003-4012. Li, J., et al., Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes. Advanced Functional Materials, 2007. 17(16): p. 3207-3215. Gao, L., et al., A comparative study of damage sensing in fiber composites using uniformly and non-uniformly dispersed carbon nanotubes. Carbon, 2010. 48(13): p. 3788-3794. Park, J.-M., et al., Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique. Materials Science and Engineering: C, 2003. 23(6-8): p. 971-975. Park, J.-M., et al., Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micromechanical technique. Composites Part B: Engineering, 2007. 38(7-8): p. 847-861. Zhang, J., et al., Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon, 2010. 48(8): p. 2273-2281. Thostenson, E.T. and T.-W. Chou, Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing. Advanced Materials, 2006. 18(21): p. 2837-2841. Gao, L., et al., Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites. Carbon, 2009. 47(5): p. 1381-1388. Thostenson, E.T. and T.-W. Chou, Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology, 2008. 19(21): p. 215713. Zhang, H., et al., Integrated Damage Sensing in Fibre-Reinforced Composites with Extremely Low Carbon Nanotube Loadings. Journal of Nanomaterials, 2015. 2015: p. 1-7. Karim, Mohammad A., and Abdul A. Awwal. Optical computing: an introduction. John Wiley Sons, Inc., 1992. Wolf, M.B.E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 2013. 沈育霖, 單秋成, 光纖感測器原理及在複合材料上之應用. 工業安全衛生, 2005. 187: p. 9-24. Erdogan, T., Fiber grating spectra. Journal of Lightwave Technology, 1997. 15(8): p. 1277-1294. Hill, K.O. and G. Meltz, Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997. 15(8): p. 1263-1276. Menendez, J. and J.A. Guemes, Bragg-grating-based multiaxial strain sensing: its application to residual strain measurement in composite laminates. SPIE's 7th Annual International Symposium on Smart Structures and Materials. Vol. 3986. 2000: SPIE. LIN, C.-L., Opto-Mechanical Applications of Microstructured Materials. 2004, Joseph Fourier University / National Taiwan University. 楊易叡, 光纖光柵在單搭接膠合接口完整性監測之應用, in 機械工程學研究所. 2016, 國立臺灣大學. p. 1-203. Du, W., et al., Fundamentals and applications of optical fiber Bragg grating sensors to textile structural composites. Composite Structures, 1998. 42(3): p. 217-229. S Hayes, T.L., D Brooks, S Monteith, B Ralph, S Vickers and G F Fernando, In situ self-sensing fibre reinforced composites. Smart Materials Structures., 1997. 6: p. 432-440. Lo, Y.-L. and F.-Y. Xiao, Measurement of Corrosion and Temperature Using a Single-Pitch Bragg Grating Fiber Sensor. Journal of Intelligent Material Systems and Structures, 1998. 9(10): p. 800-807. Dewynter-Marty, V., et al., Embedded Fiber Bragg Grating Sensors for Industrial Composite Cure Monitoring. Journal of Intelligent Material Systems and Structures, 1998. 9(10): p. 785-787. Degrieck, J., W. De Waele, and P. Verleysen, Monitoring of fibre reinforced composites with embedded optical fibre Bragg sensors, with application to filament wound pressure vessels. NDT E International, 2001. 34(4): p. 289-296. Kuang, K.S.C., et al., Embedded fibre Bragg grating sensors in advanced composite materials. Composites Science and Technology, 2001. 61(10): p. 1379-1387. Pereira, G., et al., On the improvement of strain measurements with FBG sensors embedded in unidirectional composites. Polymer Testing, 2013. 32(1): p. 99-105. Pereira, G., et al., Study of strain-transfer of FBG sensors embedded in unidirectional composites. Polymer Testing, 2013. 32(6): p. 1006-1010. Acheson, J.A., P. Simacek, and S.G. Advani, The implications of fiber compaction and saturation on fully coupled VARTM simulation. Composites Part A: Applied Science and Manufacturing, 2004. 35(2): p. 159-169. 陳奕杰, 具自我健康監測能力之智慧型奈米複合材料之探討, 機械工程學研究所. 2017, 國立臺灣大學. p. 1-123. 程品捷, 以內埋式光纖光柵感測器監測膠合修補碳纖維複合材料衝擊損傷之應用, 機械工程學研究所. 2010, 國立臺灣大學. p. 1-84. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79724 | - |
| dc.description.abstract | 本研究目的為監測纖維複合材料的內部損傷,透過混入奈米碳管及內埋光纖布拉格光柵感測器監測結構的完整性。研究中的實驗對象為玻璃纖維/環氧樹脂複合材料,實驗方法為反覆加卸載。監測內部損傷有兩大方向,分別為電壓監測與光柵監測。電壓監測方向主要為降低材料初始電阻,透過在玻璃纖維布上附著奈米碳管與內埋銅箔,達到提升電壓變化率敏感度的效果,及透過電壓變化率的趨勢解釋材料內部發生破壞的過程。光柵監測的方向主要為在材料中內埋光柵感測器監測破壞。改良後的電壓監測實驗結果能夠將材料內部的破壞歷程劃分為線性變化、非線性變化、電壓變化率陡升三種現象,當電壓變化率呈現非線性變化時,代表此時內部損傷不斷增加累積,陡升代表此時內部損傷發生一定程度上的破壞。內埋光柵感測器為局部地觀察內部損傷,將光柵內埋入交叉疊層0°層與90°層之間,觀察內部的損傷及分層現象,透過加卸載實驗觀察頻譜,可知內部損傷的發生過程,透過改變0°層的數量施作實驗,實驗結果可知光柵感測器在不同強度的材料內能夠一致的在20%~30%的拉伸破壞強度初步監測到損傷。光柵感測器監測損傷的能力落在試片的拉伸破壞強度前期,電壓監測的能力落在試片的拉伸破壞強度中後期,結合兩種非破壞檢測的方法提出一套結構完整性監測。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:08:52Z (GMT). No. of bitstreams: 1 U0001-2108202115153200.pdf: 16781418 bytes, checksum: 07c7bf1ecb858b4129c36007f42b9fe2 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 IX 表目錄 XX 第一章 緒論 1 1.1前言 1 1.2研究動機 1 1.3論文章節說明 2 第二章 文獻回顧 3 2.1電阻自主健康監測 3 2.1.1 奈米碳管之導電機制 3 2.1.2奈米碳管之分散 5 2.1.3電阻監控於複合材料 8 2.1.4奈米碳管附著玻璃纖維布 14 2.2光纖布拉格光柵 16 2.2.1光纖基本構造 16 2.2.2光纖光柵感測器原理 17 2.2.3光纖布拉格光柵原理 17 2.3內埋在複合材料中的FBG感測器 21 2.3.1內埋入複合材料 21 2.3.2內埋入單向性複合材料 23 2.4真空輔助樹脂轉注成形 (Vacuum Assisted Resin Transfer Molding, VARTM) 24 2.5文獻回顧總結 25 第三章 實驗材料與設備 26 3.1製備纖維複合材料試片用材料 26 3.1.1單向玻璃纖維布 26 3.1.2環氧樹脂A劑、B劑 26 3.1.3多壁奈米碳管 26 3.1.4鍍金圓孔針座 27 3.1.5導電銀膠 27 3.1.6排針加固膠 27 3.1.7雙導電銅箔膠帶 27 3.2製備纖維複合材料試片用設備 29 3.2.1真空輔助樹脂轉注系統 29 3.2.2熱風循環烘箱 29 3.2.3鑽石砂輪機 29 3.2.4電磁加熱攪拌器 29 3.2.5超音波打碎機 30 3.2.6高速均質機 30 3.2.7攪拌機 30 3.2.8真空脫泡系統 30 3.3光纖光柵感測器相關設備 33 3.3.1光敏光纖(Photosensitive fiber) 33 3.3.2筆式可視故障探測儀 33 3.3.3 NI-GPIB-USB-HS傳輸線 34 3.3.4光纖切割機 34 3.3.5光纖熔接機 34 3.3.6光循環器 34 3.3.7寬頻光源 34 3.3.8光頻譜分析儀(Optical Spectrum Analyzer, OSA) 35 3.4電壓監測相關設備 37 3.4.1多功能I/O介面卡(NI-6009) 37 3.4.2多功能I/O介面卡(NI-6215) 37 3.4.3電源量測儀器 37 3.5實驗設備 39 3.5.1萬能材料試驗機(Material Testing System, MTS) 39 3.5.2簡易衝擊試驗機 39 第四章 實驗方法與流程 41 4.1真空輔助樹脂轉注管路佈置 42 4.2光柵監測法 47 4.2.1內埋光纖布拉格光柵 47 4.2.2光路設置 51 4.2.3材料內埋FBG後測試 52 4.2.4量化頻譜分析 55 4.3電壓監測法 57 4.3.1電極佈置 57 4.3.2奈米碳管附著纖維布 58 4.3.3奈米碳管混入環氧樹脂 60 4.4拉伸試驗 61 4.5試片命名規則 62 4.6實驗試片總表及目的分類 63 第五章 實驗結果與討論 65 5.1光柵監測纖維複合材料內部損傷 66 5.1.1 [0/906/0]疊層內部損傷 66 5.1.2 [02/FBG{0}/904/02]疊層內部損傷 69 5.1.3頻譜數據量化variation 74 5.1.4斷裂處與光柵位置討論 80 5.1.5小結 83 5.2電阻監測纖維複合材料內部損傷 84 5.2.1電極位置之電性探討 85 5.2.2電性探討-有無附著奈米碳管 86 5.2.3小結 101 5.3結構完整性健康監測(SHM) 102 5.3.1反覆加卸載 102 5.4 纖維複合材料受衝擊之結構健康監測 106 5.4.1光柵監測-衝擊後拉伸 106 5.4.2電壓監測-衝擊後拉伸 107 5.4.3光柵監測-衝擊後疲勞 109 5.4.4電壓監測-衝擊後疲勞 110 第六章 結論與未來展望 112 6.1結論 112 6.2未來展望 113 參考文獻 114 附錄 117 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 光柵感測器 | zh_TW |
| dc.subject | 纖維複合材料 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 奈米碳管塗層 | zh_TW |
| dc.subject | CNT deposition | en |
| dc.subject | Grating sensor | en |
| dc.subject | Carbon nanotubes | en |
| dc.subject | Fiber composite | en |
| dc.title | 以內埋光柵監測含奈米碳管之纖維複合材料內部損傷 | zh_TW |
| dc.title | Monitoring Internal Damage of Carbon Nanotube/Epoxy Fiber Composites by Embedded Fiber Bragg Grating | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江家慶(Hsin-Tsai Liu),沈銘原(Chih-Yang Tseng) | |
| dc.subject.keyword | 纖維複合材料,光柵感測器,奈米碳管,奈米碳管塗層, | zh_TW |
| dc.subject.keyword | Fiber composite,Grating sensor,Carbon nanotubes,CNT deposition, | en |
| dc.relation.page | 146 | |
| dc.identifier.doi | 10.6342/NTU202102570 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2108202115153200.pdf | 16.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
