Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79721
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王珮玲(Pei-Ling Wang)
dc.contributor.authorPei-En Chenen
dc.contributor.author陳培恩zh_TW
dc.date.accessioned2022-11-23T09:08:46Z-
dc.date.available2023-08-24
dc.date.available2022-11-23T09:08:46Z-
dc.date.copyright2021-09-02
dc.date.issued2021
dc.date.submitted2021-08-24
dc.identifier.citation英文部分 Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. and Stahl, D. A. (1990) Combination of 16S Ribosomal-RNA-Targeted Oligonucleotide Probes with Flow-Cytometry for Analyzing Mixed Microbial-Populations: Applied and Environmental Microbiology, 56(6), 1919-1925. Apprill, A., McNally, S., Parsons, R. and Weber, L. (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton: Aquatic Microbial Ecology, 75(2), 129-137. Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Martí, E., Packman, A. I., Newbold, J. D. and Sabater, F. (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 1, 95-100. Beller, H. R., Chain, P. S. G., Letain, T. E., Chakicherla, A., Larimer, F. W., Richardson, P. M., Coleman, M. A., Wood, A. P. and Kelly, D. P. (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans. Journal of Bacteriology, 188(4), 1473-1488. Berg, K., Lyra, C., Sivonen, K., Paulin, L., Suomalainen, S., Tuomi, P. and Rapala, J. (2009) High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. The ISME Journal, 3, 314-325. Berman, T., Hoppe, H. and Gocke K. (1994) Response of aquatic bacterial populations to substrate enrichment. Marine Ecology Progress Series, 104, 173-184. Berner, R. A., Lasaga, A. C. and Garrels, R. M. (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283, 641-683. Bertilsson, S. and Tranvik, L. J. (2000) Photochemical transformation of dissolved organic matter in lakes. Limnology and Oceanography, 45, 753-762. Blümel, M., Süling, J. and Imhoff, J. F. (2007) Depth-specific distribution of Bacteroidetes in the oligotrophic Eastern Mediterranean Sea. Aquatic Microbial Ecology, 46, 209-224. Boden, R., Hutt, L. P. and Rae, A. W. (2017) Reclassification of Thiobacillus aquaesulis (Wood Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1191-1205. Boetius, A. K., Schubert, C. J., Rickert, D., Widdel, F. and Gieseke, A. (2000) A microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623-626. Briand, C., Sebilo, M., Louvat, P., Chesnot, T., Vaury, V., Schneider, M. and Plagnes, V. (2017) Legacy of contaminant N sources to the NO3- signature in rivers: a combined isotopic (δ15N-NO3-, δ18O-NO3-, δ11B) and microbiological investigation. Scientific Reports, 7. Brigmon, R., Martin, H. and Aldrich, H. (1997) Biofouling of Groundwater Systems by Thiothrix spp.. Current Microbiology, 35, 169-174. Canfield, D. E., Thamdrup, B. and Kristensen, E. (2005) Aquatic geomicrobiology Advances in Marine Biology, 48, 1-600. Chaves, M. G., Silva, G. G., Rossetto, R., Edwards, R. A., Tsai, S. M. and Navarrete, A. A. (2019) Acidobacteria subgroups and their metabolic potential for carbon degradation in sugarcane soil amended with vinasse and nitrogen fertilizers. Frontiers Microbiology, 10, 1680. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y. L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michael, H. J., Kress, W. J., Karol, K. A., Clark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K., Kim, K. J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q. Y., Plunkett, G. M., Soltis, P. S., Swensen, S. M., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H., Graham, S. W. Jr., Barrett, S. C. H., Dayanandan, S. and Albert, V. A. (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden, 80, 528-580. Chen, C. T. A. (2004) Exchanges of carbon in the coastal seas. In: The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, Field, C. B. and Raupach, M. R. (Eds.), Island Press, Washington, DC. Chin-Leo, G. and Benner, R. (1992) Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume. Marine Ecology Progress Series, 87, 87-103. Clarke, K. R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117-143. Cloern, J. E. (1999) The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquatic Ecology, 33, 3-16. Cole, J. J. and Caraco, N. F. (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research, 52, 101-110. Cole, J. J., Findlay, S. and Pace, M. L. (1988) Bacterial production in fresh and saltwater ecosystems: A cross system overview. Marine Ecology Progress Series, 43, 1-10. Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G.,Duarte, C. M., Kortelainen, P., Downing, J. A. and Middelburg, J. J. (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget, Ecosystems, 10, 172-185. Cottrell, M. T. and Kirchman, D. L. (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 66, 1692-1697. Crump, B. C. and Hobbie, J. E. (2005) Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnology and Oceanography, 50, 1718-1729. Dadson, S. J., Hovius, N., Chen, H. G., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D. and Lin, J. C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. Daims, H., Lebedeva, E., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., Bergen, M. V., Rattei, T., Bendinger, B., Nielsen, P. H. and Wagner, M. (2015) Complete nitrification by Nitrospira bacteria. Nature, 528, 504-509. Degens, E. T., Kempe, S. and Richey, J. E. (1991) Biogeochemistry of Major World Rivers; John Wiley and Sons: New York, NY, USA. del Giorgio, P. A. and Williams, P. J. B. (2005) Respiration in Aquatic Ecosystems. Oxford University Press Inc., 1–17. Domingues, R. B., Barbosa, A. and Galvão, H. (2005) Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia). Estuarine, Coastal and Shelf Science, 64, 249-260. Duan, S. W. and Bianchi, T. S. (2007) Particulate and dissolved amino acids in the lower Mississippi and Pearl Rivers (USA). Marine Chemistry, 107, 214-229. Duarte, C. M. and Agustí, S. (1998) The CO2 balance of unproductive aquatic ecosystems. Science, 281, 234-236. Duarte, C. M. and Prairie, Y. T. (2005) Prevalence of Heterotrophy and Atmospheric CO2 Emissions from Aquatic Ecosystems. Ecosystems, 8, 862-870. Dumont, M. G. and Murrell, J. C. (2005) Stable isotope probing—linking microbial identity to function. Nature Reviews Microbiology, 3, 499-504. Eiler, A., Langenheder, S., Bertilsson, S. and Tranvik, L. J. (2003) Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Applied and Environmental Microbiology, 69, 3701-3709. Fogg, G. E., Rolston, D. E., Decker, D. L., Louie, D. T. and Grismer, M. E. (1998) Spatial variation in nitrogen isotope values beneath nitrate contamination sources. Ground Water, 36(3), 418-426. Gaillardet, J., Dupre, B., Louvat, P. and Allegre, C. J. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4), 3-30. Galy, V., Peucker-Ehrenbrink, B. and Eglinton, T. (2015) Global carbon export from the terrestrial biosphere controlled by erosion, Nature, 521, 204-207. Geisseler, D. and Horwath, W. R. (2014) Investigating amino acid utilization by soil microorganisms using compound specific stable isotope analysis. Soil Biology Biochemistry, 74, 100-105. Goldsmith, M. S. (2009) Physical and chemical weathering processes and associated CO2 consumption from small mountainous rivers on high-standing islands. Gong, G. C., Shiah, F. K., Liu, K. K., Wen, Y. H. and Liang, M. H. (2000) Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Continental Shelf Research, 20, 411-436. Hall, R. O., Yackulic, C. B., Kennedy, T. A., Yard, M. D., Rosi-Marshall, E. J., Voichick, N. and Behn, K. E. (2015) Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnology Oceanography, 60, 512-526. Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G. and DeLong, E. F. (1999) Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805. Horrigan, S. G. and Springer, A. L. (1990) Oceanic and estuarine ammonium oxidation: effects of light, Limnology and Oceanography, 35, 479-482. Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V. C. and Stetter, K. O. (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature, 417, 63-67. Hung, J. J., Ho, C. M. and Shiah, F. K. (2014) Effects of river inputs on nutrient and organic-carbon conditions and net ecosystem metabolism in the Kaoping (Taiwan) coastal sea. Marine and Freshwater Research, 65(8), 697. Inagaki, F., Takai, K., Nealson, K. H. and Horikoshi, K. (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ɛ-proteobacteria isolated from Okinawa Trough hydrothermal sediments. International Journal of Systematic and Evolutionary Microbiology, 54, 1477-1482. Jenson, I. (2014) Encyclopedia of Food Microbiology (Second Edition). 111-117. Jezbera, J., Jezberová J., Brandt, U. and Hahn, W. M. (2011) Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environmental Microbiology, 13, 922-931. Jurado, M., López, M., Suárez-Estrella, F., Vargas-García, M., López-González, J. and Moreno, J. (2014) Exploiting composting biodiversity: Study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting. Bioresource Technology, 162, 283-293. Kacar, B., Hanson-Smith, V., Adam, Z. R. and Boekelheide, N. (2017) Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree. Geobiology, 15, 628-640. Karl, T. R. and Trenberth, K. E. (2003) Modern global climate change. Science, 302, 1719-1723. Kelly, D. P. and Wood, A. P. (2006) The chemolithoautotrophic prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H. and Stackebrandt, E. editors. The prokaryotes 2ed. 2 ed. Berlin: Springer, 441-456. Kerters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P. and Stackebrandt, E. (2006) Introduction to the Proteobacteria. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., Stackebrandt. E. (eds), The Prokaryotes, A Handbook of the Biology of Bacteria, Volume 5: Proteobacteria: Alpha and Beta Subclasses, 3rd edn. Springer-Verlag: New York, 3-37. Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. and Kuramae, E. E. (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Frontiers Microbiology, 7, 744. Kirchman, D. L. (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecology, 39, 91-100. Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold , C., Spieck, E., Nielsen, P. H., Wagner, M. and Daims, H. (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proceedings of the National Academy of Sciences, 112, 11371-11376. Kodama, Y. and Watanabe, K. (2004) Sulfuricurvum kujiense gen. nov., sp nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity: International Journal of Systematic and Evolutionary Microbiology, 54, 2297-2300. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. and Schloss, P. D. (2013) Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform: Applied and Environmental Microbiology, 79(17), 5112-5120. Kusian, B. and Bowien, B. (1997) Organization and regulation of cbb CO2 genes in assimilation autotrophic bacteria. FEMS Microbiology Reviews, 21, 135-155. Lane, D. J. (1991) 16S/23S rRNA sequencing: Nucleic acid techniques in bacterial systematics, 115-175. Lee, L. C., Hsu, T. C., Lee, T. Y., Shih, Y. T., Lin, C. Y., Jien, S. H., Hein, T., Zehetner, F., Shiah, F. K. and Huang, J. C. (2019) Unusual Roles of Discharge, Slope and SOC in DOC Transport in Small Mountainous Rivers, Taiwan. Scientific Report, 9, 1574. Lin, B., Liu, Z., Eglinton, T. I., Kandasamy, S., Blattmann, T. M., Haghipour, N., Huang, K. F. and You, C. F. (2020) Island-wide variation in provenance of riverine sedimentary organic carbon: a case study from Taiwan. Earth and Planetary Science Letter, 539, 116238. Lin, H. J., Shao, K. T., Jan, R. Q., Hsieh, H. L., Chen, C. P., Hsieh, L. Y. and Hsiao, Y. T. (2007) A trophic model for the Danshuei River Estuary, a hypoxic estuary in northern Taiwan. Marine Fishery Bulletin 54, 1789-1800. Liu, K. K., Chao, S. Y., Lee, H.J., Gong, G. C. and Teng, Y. C. (2010) Seasonal variation of primary productivity in the East China Sea: a numerical study based on coupled physical–biogeochemical model. Deep-Sea Research II, 57, 1762-1782. Lladó, S., Žifčáková, L., Větrovský, T., Eichlerová, I. and Baldrian, P. (2016) Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biology and Fertility of Soils, 52, 251-260. Lohrenz, S. E., Fahnenstiel, G. L., Redalje, D.G., Lang, G.A., Dagg, M.J., Whitledge, T.E. and Dortch, Q. (1999) Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Continental Shelf Research, 19, 1113-1141. Ludwig, W., Amiotte-Suchet, P., Munhoven, G., and Probst, J. L. (1998) Atmospheric CO2 consumption by continental erosion: present-day controls and implications for the last glacial maximum. Global and Planetary Change, 16, 107-120. Marx, A., Dusek, J., Jankovec, J., Sanda, M., Vogel, T., Gelderm, R. Van, Hartmann, J. and Barth, J. A. C. (2017) A review of CO2 and associated carbon dynamics in headwater streams: a global perspective. Reviews of Geophysics, 55(2), 560-585. Meybeck, M. (1982) Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282, 401-450. Meybeck, M. (1993) Riverine transport of atmospheric carbon: sources, global typology and budget. Water, Air, and Soil Pollution, 70, 443-463. Meybeck, M. and Vörösmarty, C. (1999) Global transfer of carbon by rivers. Global Change Newsletter, 37, 18-19. Milliman, J. D. and Farnsworth, K. L. (2011) River Discharge to the Coastal Ocean: A Global Synthesis, Cambridge University Press, New York, 103. Milliman, J. D. and Syvitski, J. P. M. (1992) Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers, Journal of Geology, 100(5), 525-544. Mills, M. M., Moore, C. M., Langlois, R., Milne, A., Achterberg, E., Nachtigall, K., Lochte, K., Geider, R. J. and La Roche, J. (2008) Nitrogen and phosphorus co-limitation of bacterial productivity and growth in the oligotrophic subtropical North Atlantic. Limnology Oceanography, 53, 824-834. Mox, M. M. and Nelson, D. L. (2008) Lehninger Princioles of Biochemistry, 5th Ed. Odum, H. T. (1956) Primary production in flowing waters. Limnology and Oceanography, 1, 102-117. Peterson, B. J., Fry, B., Hullar, M., Saupe, S. and Wright, R. (1994) The distribution and stable carbon isotope composition of dissolved organic carbon in estuaries. Estuaries, 17, 111-121. Pfennig, N. (1976) Photosynthetic bacteria. Annual Reviews in Microbiology, 21, 285-324. Parada, A. E., Needham, D. M. and Fuhrman, J. A. (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Environmental Microbiology, 18(5), 1403-1414. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glöckner, F. O. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. Radajewski, S., Ineson, P., Parekh, N. and Murrell, J. C. (2000) Stable-isotope probing as a tool in microbial ecology. Nature, 403, 646-649. Randerson, J., Chapin Iii, F., Harden, J., Neff, J. and Harmon, M. (2002) Net ecosystem production: a comprehensive measure of net carbon accumulation by ecosystems. Ecological Applications, 12, 937-947. Raven, J. A. (1996) The role of autotrophs in global CO2 cycling. In: Lidstrom M.E., Tabita F.R. (eds) Microbial Growth on C1 Compounds. Springer, Dordrecht, 351-358. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. and Hess, L. L. (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 416, 617-620. Rivkin, R. B. and Legendre, L. (2001) Biogenic carbon cycling in the upper ocean: Effects of microbial respiration. Science, 291:2398-2400. Robinson, C., Serret, P., Tilstone, G., Teira, E., Zubkov, M. V., Rees, A. P. and Woodward, E. M. S. (2002) Plankton respiration in the Eastern Atlantic Ocean. Deep-see Research I, 49, 787-813. Sampou, P. and Kemp, W. M. (1994) Factors regulating plankton community respiration in Chesapeake Bay. Marine Ecology Progress Series, 110, 249-258. Schippers, A. and Jorgensen, B. B. (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica Et Cosmochimica Acta, 66(1), 85-92. Selesi, D., Pattis, I., Schmid, M., Kandeler, E. and Hartmann, A. (2007) Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. Journal of Microbiological Methods, 69, 497-503. Sherr, E. B. and Sherr, B. F. (1996) Temporal offset in oceanic production and respiration processes implied by seasonal changes in atmospheric oxygen: The role of heterotrophic microbes. Aquatic Microbial Ecology, 11, 91-100. Shiah, F. K., Gong, G. C. and Chen, C. C. (2003) Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep-Sea Research II, 50, 1295-1309. Shih, Y. T., Chen, P. H., Lee, L. C., Liao, C. S., Jien, S. H., Shiah, F. K., Lee, T. Y., Hein, T., Zehetner, F., Chang, C. T. and Huang, J. C. (2018) Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river. Hydrology and Earth System Sciences, 22(12), 6579-6590. Sinada, F. and Abdel Karim, A. G. (1984b) Primary production and respiration of the phytoplankton in the Blue and White Nile at Khartoum. Hydrobiologia. 110, 57-59. Smith, E. M. and Kemp, W. M. (2003) Plankton and bacterial respiration along an estuarine gradient: responses to carbon and nutrient enrichment. Aquatic Microbial Ecology, 30, 251-261. Tabita, F. R. (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A different perspective. Photosynthesis Research, 60, 1-28. Tabita, F. R., Hanson, T. E., Li, H., Satagopan, S., Singh, J. and Chan, S. (2007) Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs Microbiol. Microbiology and Molecular Biology Reviews, 71, 576-599. Talling, J. F. (1976) Phytoplankton: composition, development and productivity. In: J. Rzoska (ed.). ‘The Nile, Biology of an ancient River’, Junk, The Hague, 385-402. Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olaffson, J. and Nojiri, Y. (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research II, 49, 1601-1622. Takai, K. and Horikoshi, K. (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Applied and Environmental Microbiology, 66, 5066-5072. Taylor, B. E., Wheeler, M. C. and Nordstrom, D. K. (1984) Isotope Composition of Sulfate in Acid- Mine Drainage as Measure of Bacterial Oxidation. Nature, 308, 538-541. Torres, M. A., West, A. J. and Li, G. J. (2014) Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature, 507(7492), 346-349. Tracy, B. P., Jones, S. W., Fast, A. G., Indurthi, D. C. and Papoutsakis, E. T. (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Current Opinion in Biotechnology, 23(3), 364-381. Walker, J. C. G., Hays, P. B., and Kasting, J. F. (1981) A Negative Feedback Mechanism for the Long-Term Stabilization of Earths Surface-Temperature. Journal of Geophysical Research-Oceans, 86(10), 9776-9782. Wegener, G., Bausch, M., Holler, T., Thang, N. M., Prieto Mollar, M., Kellermann, M.Y., Hinrichs, K. U. and Boetius, A. (2012) Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate. Environmental Microbiology, 14, 1517-1527. Wen, L. S., Jiann, K. T. and Liu, K. K. (2008) Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuarine Coastal and Shelf Science, 78(4), 694-704. Wheatcroft, R. A., Goñi, M. A., Hatten, J. A., Pasternack, G. B. and Warrick, J. A. (2010) The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems. Limnology and Oceanography, 55(1), 161-171. White, A. F. and Brantley, S. L. (1995) Chemical weathering rates of silicate minerals: An overview. Chemical Weathering Rates of Silicate Minerals, 31, 1-22. White, P. A., Kalff, J., Rasmussen, J. B. and Gasol, J. M. (1991) The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology, 21, 99-118. Yang, B., Wang, Y. and Qian, P. Y. (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 17, 135. Yoshimura, K., Nakao, S., Noto, M., Inokura, Y., Urata, K., Chen, M. and Lin, P. W. (2001) Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan - chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chemical Geology, 177(3-4), 415-430. 中文部分 王奕傑 (2019) 卑南溪流域化學風化作用對二氧化碳收支的影響,國立臺灣大學海洋研究所碩士論文,共 89 頁。 何晟銘 (2004) 河川輸出對高屏海域碳及營養鹽生地化作用之影響。國立中山大學海洋地質及化學研究所碩士論文,共 118 頁。 吳易峰 (2020) 新武呂溪流域之硫酸鹽來源與微生物黃鐵礦氧化作用,國立臺灣大學海洋研究所碩士論文,共 65 頁。 陳沛濠 (2017) 亞熱帶造山帶之化學風化及其控制因子,國立台灣大學地理環境資源學系碩士論文,共81頁。 詹景安 (2016) 淡水河口初級生產力及群聚呼吸率之研究。國立中央大學水文與海洋科學研究所碩士論文,共96頁。 交通部水利署第八河川局。https://www.wra08.gov.tw/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79721-
dc.description.abstract二氧化碳是重要的溫室氣體,在調控大氣二氧化碳的諸多機制中,生物作用和岩石風化作用均扮演關鍵的角色。河川被視為匯集風化產物並輸送到海洋的通道,然而過去對於河川系統的研究大都聚焦於大河系統所記錄的風化作用形式、速率與影響因子,往往忽略來自河川內部進行的生地化作用,亦可能對大氣二氧化碳的調節與貢獻。近來有研究顯示高山河川對於二氧化碳收支的影響超出預期,特別是於造山帶的小河系統中,河水滯留時間短,並有大量溶質與沉積物輸送至河道,提供豐沛的岩石源礦物質與有機質,作為河域自營作用 (Autotrophy) 和異營作用 (Heterotrophy) 可能的基質,分別消耗和釋出二氧化碳,過去卻鮮有研究探討此兩種代謝形式的實際速率與控制因素,及其對於流域二氧化碳收支的影響。 本研究旨在研究台灣東部卑南溪流域生物性碳轉過程在時空上的變化,並討論其對於二氧化碳收支的影響。卑南溪流域有全台灣最高的沉積物輸出通量與高化學風化速率。本研究收集不同季節上至下游的河水樣本,添加標定 ¹³C 同位素之無機碳與有機碳源進行培養實驗,量測自營與異營作用速率,並進行地化和分子生物分析,釐清相關控制因子和參與作用的微生物族群組成。結果顯示,利用穩定碳同位素標定培養實驗追蹤河水中生物性碳的轉換,可確實偵測到生物對於無機碳和有機碳的合成作用,生物性碳轉換速率於卑南溪出海口最高、普遍濕季明顯高於乾季,具有季節性與地域性的差異,探討生物性碳的轉換速率和其他環境因子之間的關係,可發現河水溫度與氮、磷營養鹽為重要的影響因子。綜觀整個生物作用轉換碳的過程,全年皆為異營潛在代謝產生二氧化碳速率高於自營生物合成消耗的速率,推測卑南溪流域屬於異養河川系統,對大氣二氧化碳有淨輸出的潛力。分子生物方面,根據 16S rRNA 基因分析結果發現,流域上至下游有不同的微生物族群組成,亦有季節性的差異,可能在自營與異營作用中扮演各式角色。進一步估算卑南溪流域可消耗的二氧化碳通量約介於 2.4 × 10⁷ 至 1.1 × 10⁸ mole/year 間,而可產生的二氧化碳通量約介於2.1 × 10⁹ 至 1.8 × 10¹⁰ mole/year 間,顯示卑南溪流域之生物性碳轉換作用對於大氣二氧化碳具有一定程度的影響力。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:08:46Z (GMT). No. of bitstreams: 1
U0001-2208202115500300.pdf: 11965422 bytes, checksum: c27e150b32ddf2938478f8c35f0bf7c8 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 ix 第一章、 緒論 1 1.1. 河川在全球碳循環中的角色 1 1.2. 陸域環境中調控大氣二氧化碳的機制 3 1.3. 河川中進行之生物性碳轉換 4 1.4. 造山帶河川系統之重要性 7 1.5. 研究動機與目的 9 第二章、 研究材料與方法 11 2.1. 研究區域概況 11 2.2. 採樣地點與方法 12 2.3. 培養實驗設置 15 2.4. 地球化學分析 16 2.4.1. 顆粒態有機碳之穩定碳同位素與濃度分析 16 2.4.2. 溶解態無機碳濃度分析 18 2.4.3. 溶解態無機碳之穩定同位素分析 18 2.4.4. 葉綠素甲濃度分析 19 2.4.5. 營養鹽濃度分析 20 2.4.5.1. 亞硝酸鹽與硝酸鹽濃度分析 20 2.4.5.2. 氨氮濃度分析 20 2.4.5.3. 磷酸鹽濃度分析 21 2.4.6. 硫酸鹽濃度分析 21 2.5. 碳轉換速率計算 22 2.6. 微生物族群結構分析 23 2.6.1. 樣本 DNA 萃取與備製 23 2.6.2. 定序分析與資料處理 24 2.7. 微生物定量分析 25 2.7.1. 即時定量聚合酶連鎖反應 (Real-Time PCR, qPCR) 25 2.7.2. qPCR 標準品製備 27 2.7.3. 水中微生物總量計算 28 2.8. 統計分析方法 28 2.8.1. 相關性分析 28 2.8.2. 群集分析 29 第三章、 研究結果 30 3.1 地球化學分析 30 3.1.1. 馬里蘭溪 (MLL01) 31 3.1.2. 新武呂溪 (CWL01) 31 3.1.3. 大崙溪 (DL) 32 3.1.4. 鹿野溪 (LY04) 33 3.1.5. 卑南溪出海口 (BNE) 34 3.2. 碳轉換速率 36 3.2.1. 生物自營合成速率 36 3.2.2. 生物異營代謝速率 37 3.2.3. 生物性碳轉換 38 3.3. 微生物族群結構分析 42 3.3.1. 初始環境之微生物族群組成 42 3.3.2. 初始環境之微生物群集分析 43 3.3.3. 培養前後之微生物族群組成 44 3.3.4. 培養前後之微生物群集分析 48 3.4. 微生物族群豐度 54 3.4.1. 初始環境之微生物豐度 54 3.4.2. 培養樣本之微生物豐度 56 第四章、 討論 61 4.1. 生物性碳轉換速率之時空變化 61 4.2. 環境因子對碳轉換速率之影響 62 4.2.1. 生物自營合成速率 62 4.2.2. 生物異營潛在代謝速率 63 4.3. 微生物族群結構與豐度變化 65 4.3.1. 環境微生物組成特徵 65 4.3.2. 培養前後微生物菌群結構變化 66 4.3.3. 微生物量與環境因子之相關性 70 4.4. 卑南溪流域生物性碳轉換之貢獻 71 4.5. 卑南溪流域生物性碳轉換速率與其他河川、水域系統比較 73 第五章、 結論 86 參考文獻 87 附錄 100"
dc.language.isozh-TW
dc.subject¹³C同位素標定zh_TW
dc.subject自營作用zh_TW
dc.subject異營作用zh_TW
dc.subject¹³C isotope labelingen
dc.subjectautotrophyen
dc.subjectheterotrophyen
dc.title卑南溪流域河水中自營與異營作用的時空變化zh_TW
dc.titleSpatiotemporal variations of riverine autotrophy and heterotrophy in the Beinan river systemen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林立虹(Hsin-Tsai Liu),林玉詩(Chih-Yang Tseng),塗子萱
dc.subject.keyword自營作用,異營作用,¹³C同位素標定,zh_TW
dc.subject.keywordautotrophy,heterotrophy,¹³C isotope labeling,en
dc.relation.page104
dc.identifier.doi10.6342/NTU202102587
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
dc.date.embargo-lift2023-08-24-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
U0001-2208202115500300.pdf11.68 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved