Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79719
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖國偉(Kuo-Wei Liao)
dc.contributor.authorChing-Ya Leeen
dc.contributor.author李慶雅zh_TW
dc.date.accessioned2022-11-23T09:08:42Z-
dc.date.available2021-09-02
dc.date.available2022-11-23T09:08:42Z-
dc.date.copyright2021-09-02
dc.date.issued2021
dc.date.submitted2021-08-24
dc.identifier.citation王曼穎 (2012)。非飽和土壤邊坡之監測與分析(碩士論文)。國立成功大學土木工程學系所,臺南市。 李奕賢 (2010)。HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數(碩士論文)。國立中央大學應用地質研究所,桃園市。http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=976204011 李振誥 (2010)。降雨引致邊坡崩塌之耦合型水文模式解析與應用 。行政院國家科學委員會成果報告(精簡版) ,國立成功大學資源工程學系。 施國欽 (2005)。大地工程學(一)大地工程篇。台北市:文笙書局。 倪勝火 (2015)。土壤力學實驗手冊。國立成功大學土木工程學系。 張文濤(2005)。基質吸力對於邊坡穩定性之研究-以林口台地為例(碩士論文)。國立臺北科技大學土木與防災研究所,臺北市。 張曉詠 (2010)。應用ABAQUS程序進行滲流作用下邊坡穩定分析。岩石力學與工程學報,29(1),2928-2934。 陳榮河 (2004)。坡地災害引起土石流發生機制之整合研究-總計畫暨子計畫: 邊坡破壞引發土石流之機制研究-以土石流源頭為對象 (2/2)。臺北市: 國立臺灣大學土木工程學系暨研究所。 費康、彭劼 (2017)。CAE分析大系-ABAQUS岩土工程實例詳解。中國北京市:人民郵電出版社。 黃進富(1996)。土壤中水/有機液體保持特性研究。國立交通大學土木工程學系碩士論文,新竹市。 取自https://hdl.handle.net/11296/334572 楊偉文 (2013)。分離元素法應用於單剪試驗其試體尺寸效應與邊界效應之影響(碩士論文)。國立成功大學土木工程學系所,臺南市。 葉信富、鄭佳元、李振誥 (2010)。降雨誘發松茂地滑區淺層坡地崩塌之研究。 中華水土保持學報, 41(2),113–142。 詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生(2015)。台灣山區淺層崩塌地特性調查與分析。中華水土保持學報,46(1):19-28。 鄭清江、譚志豪、鍾明劍、李錦發、費立沅 (2009)。莫拉克降雨引致高屏地區邊坡淺層崩塌災害勘查與穩定性數值分析案例。地工技術,第122期,第133-142頁。 賴威宇 (2004)。現地導水度試驗評估(碩士論文)。國立交通大學土木工程系所博士論文,新竹市。 ABAQUS CAE Manual, V6.1 (2001), Hibbitt, Karlsson Sorensen, Inc. Ameratunga, J., Sivakugan, N., Das, B. M. (2016). Correlations of soil and rock properties in geotechnical engineering. New Delhi: Springer India. Amini, M., Ebrahimian, H., Liaghat, A., Fujimaki, H. (2020). Unsaturated Soil Hydraulic Properties according to Double-Ring Infiltration of Saline Water. Eurasian Soil Science, 53(11), 1596–1609.a Aronovici, V. S. (1955). Model study of ring infiltrometer performance under low initial soil moisture. Soil Science Society of America Journal, 19(1), 1-6. ASTM (2009) D3385-09, Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer. ASTM International, West Conshohocken, PA. Brand, E. W. (1984). Landslides in Southeast Asia, A state-of the art report. Proc. 4th Int. Symp. Landslides, Toronto, Canada, 1984. Capparelli, G., Spolverino, G. (2020). An Empirical Approach for Modeling Hysteresis Behavior of Pyroclastic Soils. Hydrology, 7(1), 14. Carlisle, A., Dozier, G. (2001). An off-the-shelf PSO. Proceedings of the workshop on particle swarm optimization, 1, 1–6. Carsel, R. F., Parrish, R. S. (1988). Developing joint probability distributions of soil water retention characteristics. Water resources research, 24(5), 755–769. Celia, M. A., Bouloutas, E. T., Zarba, R. L. (1990). A general mass-conservative numerical solution for the unsaturated flow equation. Water resources research, 26(7), 1483–1496. Chen, R. H., Chen, H. P., Chen, K. S., Zhung, H. B. (2009). Simulation of a slope failure induced by rainfall infiltration. Environmental Geology, 58(5), 943–952. Chowdary, V. M., Rao, M. D., Jaiswal, C. S. (2006). Study of infiltration process under different experimental conditions. Agricultural Water Management, 83(1–2), 69–78. Cornelis, W. M., Ronsyn, J., Van Meirvenne, M., Hartmann, R. (2001). Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Science Society of America Journal, 65(3), 638-648. Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. https://doi.org/10.1007/s10064-013-0538-8 Costa, I. R. D. A., Coutinho, A. P., Montenegro, S. M. G. L., Rabelo, A. E. C. D. G. D. C., Santos, S. M. D., Alves, E. M., Antonino, A. C. D. (2020). Sensitivity of hydrodynamic parameters in the simulation of water transfer processes in a permeable pavement. RBRH, 25. Croney, D., Coleman, J. D. (1961). Pore pressure and suction in soil. D., and M. Th. van Genuchten (2018). CSIRO Land and Water, Australia, pp. 183. – ONLINE ISBN: 978-1-4863-1001-2. Tricker, A. S. (1978). The infiltration cylinder: some comments on its use. Journal of hydrology, 36(3-4), 383-391. Daniel, D. E. (1989). In situ hydraulic conductivity tests for compacted clay. Journal of Geotechnical Engineering, 115(9), 1205–1226. Dassault Systèmes, 2015. Abaqus 2016 Online Documentation. Using Substructures [online documentation]. Available: http://130.149.89.49:2080/v2016/books/usb/default.htm?startat=pt07ch34s04aus128.html fbclid=IwAR3c9kG0kLkUysZeRUyySO9BxGL2sZ0pOwMj6a9fstZzO4WrRVkJKsF5QaI [Referred 23.07.2021] Deere, D. U. and Patton, F. D.: Slope stability in residual soils, Fourth Panam. Conf. SMFE, San Juan, Puerto Rico, 1, 87–170, 1971 Ebin, Joshua Prince (2018). Coupled Fluid Flow and Geomechanical Modeling of Induced Seismicity. Master's thesis, Texas A M University. Available electronically from https : / /hdl .handle .net /1969 .1 /174296. Ebrahimian, H., Liaghat, A., Parsinejad, M., Abbasi, F., Navabian, M. (2012). Comparison of one-and two-dimensional models to simulate alternate and conventional furrow fertigation. Journal of Irrigation and Drainage Engineering, 138(10), 929-938. Fatehnia, M., Tawfiq, K., Ye, M. (2016). Estimation of saturated hydraulic conductivity from double‐ring infiltrometer measurements. European Journal of Soil Science, 67(2), 135-147. Fredlund, D. G., Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley Sons. Fredlund, D. G., Morgenstern, N. R., Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian geotechnical journal, 15(3), 313-321. García-Gonzalo, E., Fernández-Martínez, J. L. (2014). Convergence and stochastic stability analysis of particle swarm optimization variants with generic parameter distributions. Applied Mathematics and Computation, 249, 286–302. Green, W.H. and G. Ampt. 1911. Studies of soil physics, part I – the flow of air and water through soils. J. Ag. Sci. 4:1-24. Harp, E. L., Michael, J. A., Laprade, W. T., Baum, R. L., Godt, J. W., Highland, L. M. (2008). Shallow landslide hazard map of Seattle, Washington. Landslides and Engineering Geology of the Seattle, Washington, Area: Geological Society of America Reviews in Engineering Geology, 20, 67–82. Hodge, R. A., Freeze, R. A. (1977). Groundwater flow systems and slope stability. Canadian Geotechnical Journal, 14(4), 466–476. Hollingsworth, R., Kovacs, G. S. (1981). Soil slumps and debris flows: Prediction and protection. Bulletin of the Association of Engineering Geologists, 18(1), 17–28. Keefer, D. K., Larsen, M. C. (2007). Assessing landslide hazards. Science, 1136–1138. Kim, M. S., Onda, Y., Uchida, T., Kim, J. K. (2016). Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology, 271, 40–54. https://doi.org/10.1016/j.geomorph.2016.07.031 Lai, J., Luo, Y., Ren, L. (2012). Numerical evaluation of depth effects of double‐ring infiltrometers on soil saturated hydraulic conductivity measurements. Soil Science Society of America Journal, 76(3), 867-875. Lam, L., Fredlund, D. G., Barbour, S. L. (1987). Transient seepage model for saturated–unsaturated soil systems: A geotechnical engineering approach. Canadian Geotechnical Journal, 24(4), 565–580. Lambe, T. W., Whitman, R. V. (1979). Soil Mechanics, SI Version John Wiley Sons, New York. Leshchinsky, B., Vahedifard, F., Koo, H.-B., Kim, S.-H. (2015). Yumokjeong Landslide: An investigation of progressive failure of a hillslope using the finite element method. Landslides, 12(5), 997–1005. Li, M., Liu, T., Duan, L., Luo, Y., Ma, L., Zhang, J., ... Chen, Z. (2019). The scale effect of double-ring infiltration and soil infiltration zoning in a semi-arid steppe. Water, 11(7), 1457. Liu, H. F., Génard, M., Guichard, S., Bertin, N. (2007). Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. Journal of Experimental Botany, 58(13), 3567-3580. Lumb, P. (1975). Slope failures in Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology, 8(1), 31–65. https://doi.org/10.1144/GSL.QJEG.1975.008.01.02 Ma, Y., Feng, S., Su, D., Gao, G., Huo, Z. (2010). Modeling water infiltration in a large layered soil column with a modified Green–Ampt model and HYDRUS-1D. Computers and Electronics in Agriculture, 71, S40-S47. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441. Marsal, R. J. (1967). Large scale testing of rockfill materials. Journal of the Soil Mechanics and Foundations Division, 93(2), 27–43. Mein, R. G., Larson, C. L. (1973). Modeling infiltration during a steady rain. Water resources research, 9(2), 384-394. Mirus, B. B., Smith, J. B., Baum, R. L. (2017). Hydrologic impacts of landslide disturbances: Implications for remobilization and hazard persistence. Water Resources Research, 53(10), 8250-8265. Montoya-Dominguez, J. D., García-Aristizábal, E. F., Vega-Posada, C. A. (2017). One-dimensional experimental study of rainfall infiltration into unsaturated soil. Revista Facultad de Ingeniería Universidad de Antioquia, 82, 74–81. Mualem, Y. (1976). Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media. Water resources research, 12(6), 1248-1254. Ng, C. W. W., Shi, Q. (1998). A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and geotechnics, 22(1), 1–28. Nseka, D. (2018). A characterization of landslide occurrence in the kigezi highlands of south western uganda (Doctoral dissertation), Makerere University, Kampala, Uganda. Pradel, D., Raad, G. (1993). Effect of permeability on surficial stability of homogeneous slopes. Journal of geotechnical engineering, 119(2), 315–332. Rassam, D., Šimůnek, J., Mallants, D., and M. Th. van Genuchten (2018). The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media: Tutorial, Version 1.00. CSIRO Land and Water, Australia, pp. 183. – ONLINE ISBN: 978-1-4863-1001-2. Reid, M. E. (1997). Slope instability caused by small variations in hydraulic conductivity. Journal of Geotechnical and Geoenvironmental Engineering, 123(8), 717–725. Robert, D. J. and Britto, A. M. (n.d.) Geostatic Stress Calculation in ABAQUS for unsaturated sands. Engineering Department Cambridge University. [online documentation]. Available: http://www-h.eng.cam.ac.uk/help/programs/fe/abaqus/doc/Geostatic6.doc Rulon, J. J., Freeze, R. A. (1985). Multiple seepage faces on layered slopes and their implications for slope-stability analysis. Canadian Geotechnical Journal, 22(3), 347–356. Shi, Y., Eberhart, R. C. (1998, March). Parameter selection in particle swarm optimization. In International conference on evolutionary programming (pp. 591-600). Springer, Berlin, Heidelberg. Šimůnek, J., Van Genuchten, M. T., Sejna, M. (2005). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports, 3, 1-240. Šimunek, J., Van Genuchten, M. T., Šejna, M. (2012). HYDRUS: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1263-1274. Tuller, M., Or, D., Hillel, D. (2004). Retention of water in soil and the soil water characteristic curve. Encyclopedia of Soils in the Environment, 4, 278–289. Tyson Oschner. (2019). Rain or Shine : An Introduction to Soil Physical Properties and Processes. Oklahoma State University. Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892–898. Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E. (1999). The influence of soil structure and stress history on the soil–water characteristics of a compacted till. Geotechnique, 49(2), 143-159. Wang, D., Tan, D., Liu, L. (2018). Particle swarm optimization algorithm: An overview. Soft Computing, 22(2), 387–408. Wilson, C. J., Dietrich, W. E. (1987). The contribution of bedrock groundwater flow to storm runoff and high pore pressure development in hollows. IAHS-AISH publication, 165, 49–59. Yeh, H. F., Huang, T. T., Lee, J. W. (2021). Effect of Unimodal and Bimodal Soil Hydraulic Properties on Slope Stability Analysis. Water, 13(12), 1674. Zhang, C., Shao, W., Yue, F., Saffari, P., Nie, W. (2019). Physical Tank Experiment Investigation on Rainfall Producing Groundwater Level in Homogeneous Material Slopes. Geofluids, 2019. Zhou, R. F., Lei, X. W., Meng, Q. S., Lin, C. (2012). Stability analysis of unsaturated soil slopes under rainfall infiltration. Advanced Materials Research, 594, 126–129. Zhuang, J., Peng, J., Wang, G., Iqbal, J., Wang, Y., Li, W., ... Zhu, X. (2017). Prediction of rainfall‐induced shallow landslides in the Loess Plateau, Yan'an, China, using the TRIGRS model. Earth Surface Processes and Landforms, 42(6), 915-927.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79719-
dc.description.abstract"由於台灣地質年輕、地形陡峻,當颱風或豪雨侵襲時,容易引發淺層崩塌造成生命財產受到威脅,而入滲是影響淺層崩塌是否發生的重要因子。雙環入滲儀是常被用來取得土壤入滲率的實驗,然而在野外進行雙環入滲實驗需要攜帶大量的水且實驗時間長,可說是費時費力。近年電腦計算能力大幅提升,市面上的數值軟體可考量土壤入滲機制進行模擬,並可透過更改模式輸入參數使物理模型描述具有時變性的影響因子,因此許多學者選擇使用數值軟體進行土壤入滲與邊坡穩定的研究。 為了能以更快速且便利的方法取得土壤入滲率,本研究欲探討使用數值模擬軟體取代雙環入滲實驗的可行性。本研究首先以不同初始含水量、單位面積夯實能量來製作五組砂箱實驗的土樣,進行砂箱雙環入滲實驗,並透過土壤力學室內試驗取得數值軟體的輸入參數,模擬取得砂箱雙環入滲實驗之入滲率曲線。數值軟體則選擇常被用來研究土壤入滲與邊坡穩定且應用範圍廣的有限元素軟體ABAQUS,以及受到學界廣泛認可且免付費的孔隙介質溶液傳輸模擬軟體HYDRUS-1D。透過模擬結果與實驗結果比較,探討使用數值軟體取代雙環入滲實驗的可行性。其中,模擬時使用者需自行輸入的保水曲線,須進行至少長達一周壓力鍋試驗才能取得。因此本研究採用粒子群最佳化演算法搭配ABAQUS來決定模擬時的保水曲線,而HYDRUS-1D則採用軟體內部既有功能,以實驗觀測值逆推求得保水曲線參數來獲得保水曲線。 研究結果顯示,ABAQUS與 HYDRUS-1D的模擬結果其入滲率曲線的RMSE大小都約與真實入滲率差在一個數量級左右,而模擬結果的絕對平均誤差率分別為110.56% 與67.22% 。這與同樣使用數值軟體 (HYDRUS-2D) 模擬雙環入滲實驗的Fatehnia et al. (2016) 研究結果相比,其平均絕對誤差率僅為9.32%。透過各種砂箱排水邊界條件的模擬結果推測,本研究的模擬誤差主要來自 (1)一維與二維模式難以模擬本研究使用紅磚頭與防震墊保護砂箱後,於壓克力砂箱四周與底部產生的複雜排水邊界 (2)模擬輸入參數之飽和滲透係數並非直接採用砂箱實驗之未受擾動土樣進行實驗,因此模擬使用的飽和滲透係數與砂箱土壤真實的飽和滲透係數可能有所差異 (3)模擬輸入的土壤參數多假設為均質土壤,然而真實的土壤具異質性 (4)黏質壤土在水分入滲後產生膨脹,使得土壤孔隙變小影響土壤入滲,然而數值模擬中未考量此因素的影響。 雖然本研究的結果無法良好地證明數值軟體取代雙環入滲實驗的可行性,但根據文獻探討亦有學者使用數值軟體模擬不同形式的現地入滲實驗(Fatehnia et al., 2016; Lai et al., 2012),因此仍認為使用數值軟體取代雙環入滲實驗仍具有潛在的可能性,未來仍可持續進行相關的研究探討。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:08:42Z (GMT). No. of bitstreams: 1
U0001-2208202121493100.pdf: 7914133 bytes, checksum: c964bfcddaf1971ae0ef803065a056b2 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 i 誌 謝 ii 摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xviii 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究架構 2 第2章 文獻回顧 3 2.1 易發生淺層崩塌的土壤特性 3 2.2 土壤的基礎知識 4 2.2.1 非飽和土壤的特性 4 2.2.2 保水曲線 6 2.3 非飽和土壤的滲流理論與入滲理論 11 2.3.1 達西定律 11 2.3.2 未飽和土壤滲流理論 12 2.3.3 入滲理論 13 2.4 土壤之力學理論 14 2.4.1 土壤的有效應力 14 2.4.2 土壤的剪力強度 15 2.5 土壤入滲實驗 16 2.5.1 入滲實驗 17 2.5.2 砂箱實驗 20 2.6 研究入滲與淺層崩塌領域之數值軟體 21 2.7 ABAQUS模擬軟體介紹 22 2.7.1 控制方程式 23 2.8 HYDRUS-1D模擬軟體介紹 26 2.8.1 控制方程式 27 2.8.2 反解參數 (Inverse Solution) 27 2.9 粒子群最佳化演算法 29 第3章 研究方法 32 3.1 砂箱雙環入滲試驗與土壤室內試驗 33 3.1.1 砂箱雙環入滲實驗 33 3.1.2 土壤室內實驗 38 3.2 ABAQUS數值模擬 42 3.2.1 ABAQUS簡易模型測試 42 3.2.2 網格收斂性分析 44 3.2.3 參數敏感度測試 46 3.2.4 ABAQUS砂箱雙環入滲模擬流程 66 3.3 HYDRUS-1D數值模擬 74 第4章 研究結果與討論 77 4.1 雙環入滲實驗結果 77 4.2 數值軟體模擬結果 80 4.2.1 HYDRUS-1D 模擬結果 80 4.2.2 ABAQUS模擬結果 85 4.3 雙環入滲實驗與數值模擬的綜合討論 106 4.3.1 ABAQUS與HYDRUS-1D模擬結果比較 106 4.3.2 模擬誤差因素討論 110 第5章 結論與建議 113 5.1 結論 113 5.2 建議 113 參考文獻 115 附錄 124 附錄一 Carsel Parrish (1988)統整各種土壤之保水曲線各參數(θr,α,N,M )的敘述統計參數 124 附錄二 ABAQUS搭配PSO模擬過程中之保水曲線各參數於可行解空間疊代的分布圖 126 附錄三 ABAQUS搭配PSO模擬之RMSE最佳化的疊代圖 131 "
dc.language.isozh-TW
dc.subject粒子群最佳化演算法zh_TW
dc.subject入滲zh_TW
dc.subject入滲雙環試驗zh_TW
dc.subjectABAQUSzh_TW
dc.subjectHYDRUS-1Dzh_TW
dc.subjectHYDRUS-1Den
dc.subjectPSOen
dc.subjectABAQUSen
dc.subjectDouble-ring infiltrometeren
dc.subjectInfiltrationen
dc.title雙環入滲實驗分析與數值模擬zh_TW
dc.titleExperimental Analysis and Numerical Simulation of Double-Ring Infiltrationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee范正成(Hsin-Tsai Liu),白朝金(Chih-Yang Tseng),許少瑜
dc.subject.keyword入滲,入滲雙環試驗,ABAQUS,HYDRUS-1D,粒子群最佳化演算法,zh_TW
dc.subject.keywordInfiltration,Double-ring infiltrometer,ABAQUS,HYDRUS-1D,PSO,en
dc.relation.page132
dc.identifier.doi10.6342/NTU202102597
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-2208202121493100.pdf7.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved