請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7970完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 舒貽忠(Yi-Chung Shu) | |
| dc.contributor.author | Wei-Chieh Chuang | en |
| dc.contributor.author | 莊為傑 | zh_TW |
| dc.date.accessioned | 2021-05-19T18:00:50Z | - |
| dc.date.available | 2021-07-06 | |
| dc.date.available | 2021-05-19T18:00:50Z | - |
| dc.date.copyright | 2016-07-06 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-05-27 | |
| dc.identifier.citation | [1] A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard, and D. Guyomar, (2006). “Single Crystals and Nonlinear Process for Outstanding Vibration-Powered Electrical Generators.” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 673–684.
[2] N. S. Shenck, and J. A. Paradiso, (2001). “Energy Scavenging with Shoe-Mounted Piezoelectrics.” IEEE Micro, 21, 30–42. [3] N. G. Elvin, A. A. Elvin, and M. Spector, (2001). “A Self-Powered Mechanical Strain Energy Sensor.” Smart Materials and Structures, 10, 293–299. [4] M. Lallart, D. Guyomar, Y. Jayet, L. Petit, E. Lefeuvre, T. Monnier, P. Guy, and C. Ruchard, (2008). “Synchronized Switch Harvesting Applied to Self-Powered Smart Systems: Piezoactive Microgenerators for Autonomous Wireless Receivers.” Sensors and Actuators A: Physical, 147, 263-272. [5] H. A. Sodano, G. Park, D. J. Leo, and D. J. Inman, (2003). “Model of Piezoelectric Power Harvesting Beam.” Proceedings of IMECE, 43250, 345-354. [6] S. Roundy, and P. K. Wright, (2004). “A Piezoelectric Vibration Based Generator for Wireless Electronics.” Smart Materials and Structures, 13, 1131-1142. [7] X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren, and L. Liu, (2008). “A Frequency Adjustable Vibration Energy Harvester.” Proceedings of PowerMEMS, 245-248. [8] A. Erturk, and D. J. Inman, (2009). “An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting from Base Excitations.” Smart Materials and Structures, 18, 025009. [9] M. F. Lumentut, and I. M. Howard, (2013). “Analytical and Experimental Comparisons of Electromechanical Vibration Response of a Piezoelectric Bimorph Beam for Power Harvesting.” Mechanical Systems and Signal Processing, 36, 66-86. [10] E. S. Leland, and P. K. Wright, (2006). “Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload.” Smart Materials and Structures, 15, 1413-1420. [11] J. E. Kim, (2014). “Dedicated Algorithm and Software for the Integrated Analysis of AC and DC Electrical Outputs of Piezoelectric Vibration Energy Harvesters.” Journal of Mechanical Science and Technology, 28, 4027-4036. [12] W. A. Ashtari, M. Hunstig, T. Hemsel, and W. Sextro, (2012). “Analytical Determination of Characteristic Frequencies and Equivalent Circuit Parameters of a Piezoelectric Bimorph.” Journal of Intelligent Material Systems and Structures, 23, 15-23. [13] P. Dalzell, and P. Bonello, (2012). “Analysis of an Energy Harvesting Piezoelectric Beam with Energy Storage Circuit.” Smart Materials and Structures, 21, 105029. [14] Y. T. Hu, H. Xue, and H. P. Hu, (2007). “A Piezoelectric Power Harvester with Adjustable Frequency through Axial Preloads.” Smart Materials and Structures, 16, 1961-1966. [15] J. Ajitsarial, S. Y. Choe, D. Shen, and D. J. Kim, (2007). “Modeling and Analysis of a Bimorph Piezoelectric Cantilever Beam for Voltage Generation.” Smart Materials and Structures, 16, 447-454. [16] H. P. Hu, J. G. Cao, and Z. J. Cui, (2007). “Performance of a Piezoelectric Bimorph Harvester with Variable Width.” Journal of Mechanics, 23, 197-202. [17] M. Kim, M. Hoegen, J. Dugundji, and B. L. Wardle, (2010). “Modeling and Experimental Verification of Proof Mass Effects on Vibration Energy Harvester Performance.” Smart Materials and Structures, . 19, 045023. [18] H. Wang, and Q. Meng, (2013). “Analytical Modeling and Experimental Verification of Vibration-Based Piezoelectric Bimorph Beam with a Tip-Mass for Power Harvesting.” Mechanical Systems and Signal Processing, 36, 193-209. [19] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, (2005). “Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 584-595. [20] Y. C. Shu, and I. C. Lien, (2006). “Analysis of Power Output for Piezoelectric Energy Harvesting Systems.” Smart Materials and Structures, 15, 1499-1512. [21] Y. C. Shu, I. C. Lien, (2006). “Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System.” Journal of Micromechanics and Microengineering, 16, 2429-2438. [22] Y. C. Shu, and I. C. Lien, (2007). “An Improved Analysis of the SSHI Interface in Piezoelectric Energy Harvesting.” Smart Materials and Structures, 16, 2253-2264. [23] Y. C. Shu, I. C. Lien, (2007). “A Comparison Between the Standard and SSHI Interfaces Used in Piezoelectric Power Harvesting.” Proceedings of SPIE, 6525, 652509. [24] I. C. Lien, Y. C. Shu, W. J. Wu, S. M. Shiu, and H. C. Lin, (2010). “Revisit of Series-SSHI with Comparisos to Other Interfacing Circuits in Piezoelectric Energy Harvesting.” Smart Materials and Structures, 19, 125009. [25] J. R. Liang, and W. H. Liao, (2009). “Piezoelectric Energy Harvesting and Dissipation on Structural Damping.” Journal of Intelligent Material Systems and Structures, 20, 515-527. [26] J. R. Liang, and W. H. d, (2011). “Energy Flow in Piezoelectric Energy Harvesting Systems.” Smart Materials and Structures, 20, 015005. [27] J. M. Renno, M. F. Daqaq, and D. J. Inman, (2009). “On the Optimal Energy Harvesting from a Vibration Source.” Journal of Sound and Vibration, 320, 386-405. [28] L. Deng, Q. Wen, S. Jiang, X. Zang, and Y. She, (2015). “On the Optimization of Piezoelectric Vibration Energy Harvester.” Journal of Intelligent Material Systems and Structures, 26, 2489-2499. [29] A. Erturk, and D. J. Inman, (2008). “On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters.” Journal of Intelligent Material Systems and Structures, 19, 1311-1325. [30] A. Erturk, and D. J. Inman, (2008). “Issues in Mathematical Modeling of Piezoelectric Energy Harvesters.” Smart Materials and Structures, 17, 065016. [31] M. F. Lumentut, and I. M. Howard, (2011). “Analytical Modeling of Self-Powered Electromechanical Piezoelectric Bimorph Beams with Multidirectional Excitation.” International Journal of Smart and Nano Materials, 2, 134-175. [32] S. M. Shahruz, (2006). “Design of Mechanical Band-Pass Filter with Large Frequency Bands for Energy Scanveging.” Mechatronics, 16, 449-461. [33] Y. Tadesse, S. Zhang, and S. Priya, (2009). “Multimodal Energy Harvesting System: Piezoelectric and Electromagnetic.” Journal of Intelligent Material Systems and Structures, 20, 625-632. [34] N. E. duToit, and B. L. Wardle, (2006). “Performance of Microfabricated Piezoelectric Vibration Energy Harvesters.” Integrated Ferroelectrics, 83, 13-32. [35] M. Ferrari, V. Ferrari, D. Marioli, and A. Taroni, (2008). “Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems.” Sensors and Actuators A, 142, 329-335. [36] I. H. Kim, H. J. Jung, B. M. Lee, and S. J. Jang, (2011). “Broadband Energy-Harvesting Using a Two Degree-of-Freedom Vibrating Body.” Applied Physics Letters, 98, 214102. [37] H. Xue, Y. Hu, and Q. Wang, (2008). “Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs with Different Operating Frequencies.” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 55, 2104-2108. [38] I. C. Lien, and Y. C. Shu, (2012). “Array of Piezoelectric Energy Harvesting by Equivalent Impedance Approach.” Smart Materials and Structures, 21, 082001. [39] H. C. Lin, P. H. Wu, I. C. Lien, and Y. C. Shu, (2013). “Analysis of an Array of Piezoelectric Energy Harvesters Connected in Series.” Smart Materials and Structures, 22, 094026. [40] 連益慶,「陣列式壓電能量擷取系統在多種介面電路下之動態特性分析」,台灣大學應用力學所研究所博士論文,2012。 [41] 陳彥儒,「陣列式壓電能量擷取子之寬頻設計」,台灣大學應用力學所研究所碩士論文,2013。 [42] L. Mateu, and F. Moll, (2005). “Optimum Piezoelectric Bending Beam Structures for Energy Harvesting Using Shoe Inserts.” Journal of Intelligent Material Systems and Structures, 16, 835-845. [43] S. Paquin, and Y. St-Amant, (2010). “Improving the Performance of a Piezoelectric Energy Harvester Using a Variable Thickness Beam.” Smart Materials and Structures, 19, 105020. [44] A. Abdelkefi, N. Barsallo, L. Tang, Y. Yang, and M. R. Hajj, (2014). “Modeling, Validation, and Performance of Low-Frequency Piezoelectric Energy Harvesters.” Journal of Intelligent Material Systems and Structures, 25, 1429-1444. [45] A. Erturk, (2012). “Assumed-Modes Modeling of Piezoelectric Energy Harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko Models with Axial Deformations.” Computers and Structures, 106-107, 214-227. [46] Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, (2014). “Multiple Neutral Axes in Bending of a Multiple-Layer Beam With Extremely Different Elastic Properties.” Journal of Applied Mechanics, 81, 114501. [47] A. M. Wickenheiser, (2012). “Eigensolution of Piezoelectric Energy Harvesters with Geometric Discontinuities: Analytical Modeling and Validation.” Journal of Intelligent Material Systems and Structures, 24, 729-744. [48] J. E. Kim, and Y.. Y. Kim, (2011). “Analysis of Piezoelectric Energy Harvesters of a Moderate Aspect Ratio With a Distributed Tip Mass.” Journal of Vibration and Acoustics, 133, 041010. [49] M. F. Lumentut, and I. M. Howard, (2014). “Electromechanical Finite Element Modelling for Dynamic Analysis of a Cantilevered Piezoelectric Energy Harvester with Tip Mass Offset Under Base Excitations.” Smart Materials and Structures, 23, 095037. [50] Y. Yuan, H. Du, X. Xia, and Y. R. Wong, (2014). “Analytical Solutions to Flexural Vibration of Slender Piezoelectric Multilayer Cantilevers.” Smart Materials and Structures, 23, 095005. [51] F. Goldschmidtboeing, and P. Woias, (2008). “Characterization of Different Beam Shapes for Piezoelectric Energy Harvesting.” Journal of Micromechanics and Microengineering, 18, 104013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7970 | - |
| dc.description.abstract | 本論文旨在設計與探討不同力電耦合強度之壓電振子應用於能量擷取,並提供一些方法可用於實驗量測壓電振子應用於能量擷取之系統等效材料參數。壓電振動懸臂樑數學模型以能量法為基礎,採用模態函數或均佈力負載兩種形狀函數來簡化壓電振子設計,亦可引入等效電路模型,將壓電振動懸臂樑數學模型比擬成RLC電路。並採用雷利阻尼的概念來假設振子的等效機械阻尼係數,最後定義壓電振子之力電耦合強度為無因次化力電耦合係數除以無因次化機械阻尼係數。
本論文第一部分是比較由不同系統等效參數之估計曲線的差異,實驗結果顯示由三種方法用於實驗所算出的估計值曲線,估計曲線在最佳阻抗下的功率誤差極小,在遠離最佳阻抗的電阻下之功率誤差則加大,但無論在何阻抗下,估計值曲線的趨勢皆與實驗曲線的趨勢吻合。其中,等效電路法較能量法好的原因是可在材料尺寸與參數未知的情況下作量測。 本論文第二部分是研究壓電層長度比對於力電耦合強度的影響,由理論、模擬、實驗得到以下結論,實驗結果與理論結果趨勢吻合,因此理論結果是可以當作預測壓電振子之物理行為的依據。分析發現強力電耦合振子與弱力電耦合振子有相似的物理行為,第一,皆為當壓電層長度比約為0.5時,力電耦合強度最強。第二,單位質量的發電功率並非隨著總質量的增加而增加,而是當壓電層長度比約為0.3時,單位質量的發電功率最小。有趣的是,單位成本的發電功率約在與前者相同的壓電層長度比下有最小值。第三,實驗結果顯示不同壓電層長度比之雷利阻尼的係數皆在同次序且可趨近定值,且強力電耦合振子的雷利阻尼係數小於弱力電耦合振子的雷利阻尼係數。 | zh_TW |
| dc.description.abstract | The goal of the present thesis is to design the piezoelectric energy harvesters with different magnitudes of electromechanical coupling. In addition, it also proposes several methods for measuring the effective system parameters of an energy harvester. The methodology is based on the energy approach where the shape function is chosen either by the standard modal analysis or by the method of uniform load. Besides, the effective system parameters can also be determined based on the equivalent RLC circuit model. The proposed criterion for measuring the strength of electromechanical coupling of an energy harvester is defined by the ratio of electromechanical coupling to the mechanical damping ratio. The damping coefficient is assumed to the type of Rayleigh damping here.
The first part of the present thesis is to make comparisons among the different proposed estimates of effective parameters. It is found the estimation of harvested power frequency response measured at the optimal load agrees quite well with experimental observations. However, the disagreement increases in the case of attaching larger electric loads. It is also found the estimation based on the equivalent circuit model shows the least error compared to other methods. The second part is to study the effect of different lengths of piezoelectric layers on the magnitudes of electromechanical coupling. It is found both analytic estimates and experimental observations exhibit the similar trends. Hence, our proposed estimates are capable of performance evaluations. The first observation from our analysis is that the behavior of the case of strong electromechanical coupling is similar to that of the weak electromechanical coupling. The second result is the strongest coupling is achieved when the ratio of the length of the piezoelectric layer to that of the substrate is about 0.5.The third observation is the harvested power per unit mass is not monotone increasing as the increase of piezoelectric layer. Instead, it is minimized when the ratio of the piezoelectric layer to the substrate is around 0.3. Interestingly, the harvested power per unit price is also minimized at around the similar range. Finally, the experimental observations confirm that the coefficient of Rayleigh damping is approximate to be a constant in spite of different lengths of piezoelectric layers. In addition, it is observed the coefficient of Rayleigh damping in the case of weak coupling is larger than that in the case of strong coupling. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T18:00:50Z (GMT). No. of bitstreams: 1 ntu-105-R02543039-1.pdf: 6033151 bytes, checksum: 522171ad017288ace3029805f0994938 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書 #
致謝 I 摘要 III ABSTRACT IV 目錄 V 圖目錄 VII 表目錄 X CHAPTER 1.導論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 論文架構 6 CHAPTER 2. 壓電振動子模型 7 2-1 壓電效應 7 2-1-1 正壓電效應 7 2-1-2 逆壓電效應 8 2-2 壓電懸臂樑之數學模型 9 2-3 壓電懸臂樑之等效電路 20 CHAPTER 3. 模型數值驗證 24 3-1 理論之等效機械阻尼係數 24 3-2 模型驗證 25 CHAPTER 4. 不同力電耦合強度振子之設計 35 4-1 設計方法 35 4-2 設計壓電片之特性結果探討 39 CHAPTER 5. 實驗結果與分析比較 55 5-1 實驗之等效參數如何量測 55 5-2 實驗儀器與架構 59 5-3 實驗結果 63 CHAPTER 6. 結論與展望 102 6-1 結論 102 6-2 未來展望 105 APPENDIX 1. 模態函數 106 A-1-1 模態分析法 106 A-1-2 均佈力負載法 110 APPENDIX 2. 有限元素軟體COMSOL 3.5A操作說明 112 參考文獻 114 | |
| dc.language.iso | zh-TW | |
| dc.title | 不同力電耦合強度壓電振子應用於能量擷取之研究 | zh_TW |
| dc.title | Design of Piezoelectric Energy Harvesters with Different Electromechanical Couplings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑞琳(Ruey-Lin Chern),廖文義(Wen-I Liao) | |
| dc.subject.keyword | 壓電振子設計,壓電振動能量擷取系統之等效參數量測,能量法,等效電路模型,力電耦合強度, | zh_TW |
| dc.subject.keyword | Design of Piezoelectric Oscillator,Measurement of Equivalent System Parameters,Energy Method,Equivalent Circuit Model,Electromechanical Coupling, | en |
| dc.relation.page | 118 | |
| dc.identifier.doi | 10.6342/NTU201600269 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-05-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 5.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
