請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79699完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝志豪(Chih-hao Hsieh) | |
| dc.contributor.author | Jui-Tse Ko | en |
| dc.contributor.author | 柯叡澤 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:07:59Z | - |
| dc.date.available | 2021-09-02 | |
| dc.date.available | 2022-11-23T09:07:59Z | - |
| dc.date.copyright | 2021-09-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-25 | |
| dc.identifier.citation | Azam, F. (1998). Microbial Control of Oceanic Carbon Flux: The Plot Thickens. Science, 280 (5364), 694. Berry, D., Ben Mahfoudh, K., Wagner, M., Loy, A. (2011). Barcoded Primers Used in Multiplex Amplicon Pyrosequencing Bias Amplification. Applied and Environmental Microbiology, 77(21), 7846-7849. Burson, A., Stomp, M., Greenwell, E., Grosse, J., Huisman, J. (2018). Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology, 99(5), 1108-1118. Chen, C. C., Shiah, F. K., Chung, S. W., Liu, K. K. (2006). Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. Journal of Marine Systems, 59(1), 97-110. Chen, T. Y., Tai, J. H., Ko, C. Y., Hsieh, C. H., Chen, C. C., Jiao, N., et al. (2016). Nutrient pulses driven by internal solitary waves enhance heterotrophic bacterial growth in the South China Sea. Environ Microbiol, 18(12), 4312-4323. Cheng, W. H., Lu, H. P., Chen, C. C., Jan, S., Hsieh, C. H. (2020). Vertical Beta-Diversity of Bacterial Communities Depending on Water Stratification. Frontiers in microbiology, 11, 449-449. Croce, R., van Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 10(7), 492-501. Currie, A. R., Tait, K., Parry, H., de Francisco-Mora, B., Hicks, N., Osborn, A. M., et al. (2017). Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments. Frontiers in microbiology, 8(1599). Falkowski, P., Barber, R., Smetacek, V. (1998). Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science (New York, N.Y.), 281, 200-207. Flombaum, P., Gallegos, J., Gordillo, R., Rincón, J., Zabala, L., Jiao, N., et al. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 110. Fuhrman, J. A., Hewson, I., Schwalbach, M. S., Steele, J. A., Brown, M. V., Naeem, S. (2006). Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Natl Acad Sci U S A, 103(35), 13104-13109. Gillette, J. P., Stewart, D. J., Teece, M. A., Schulz, K. L. (2021). Abundance of mixoplanktonic algae in relation to prey, light and nutrient limitation in a dystrophic lake: a mesocosm study. Marine and Freshwater Research. Huete-Stauffer, T. M., Arandia-Gorostidi, N., Díaz-Pérez, L., Morán, X. A. G. (2015). Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions. FEMS Microbiology Ecology, 91(10). Ladau, J., Eloe-Fadrosh, E. A. (2019). Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology. Trends Microbiol, 27(8), 662-669. Lindström, E. S., Langenheder, S. (2012). Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep, 4(1), 1-9. Linz, A. M., Aylward, F. O., Bertilsson, S., McMahon, K. D. (2020). Time-series metatranscriptomes reveal conserved patterns between phototrophic and heterotrophic microbes in diverse freshwater systems. Limnology and Oceanography, 65(S1), S101-S112. Loperena, L., Soria, V., Varela, H., Lupo, S., Bergalli, A., Guigou, M., et al. (2012). Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World journal of microbiology biotechnology, 28, 2249-2256. Milici, M., Tomasch, J., Wos-Oxley, M. L., Wang, H., Jáuregui, R., Camarinha-Silva, A., et al. (2016). Low diversity of planktonic bacteria in the tropical ocean. Scientific Reports, 6(1), 19054. Modin, O., Liébana, R., Saheb-Alam, S., Wilén, B.-M., Suarez, C., Hermansson, M., et al. (2020). Hill-based dissimilarity indices and null models for analysis of microbial community assembly. Microbiome, 8(1), 132. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P., O’Hara, R. B., et al. (2012). Vegan: Community Ecology Package. R package version 2.0-2. Parsons, T. R., Maita, Y., Lalli, C. M. (1984). A Manual of Chemical and Biological Methods for Seawater Analysis. New York: Pergamon Press. Qiang, H., Zarmi, Y., Richmond, A. (1998). Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). European Journal of Phycology, 33(2), 165-171. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic acids research, 41. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Smith, B., Wilson, J. B. (1996). A Consumer's Guide to Evenness Indices. Oikos, 76(1), 70-82. Soininen, J. (2012). Macroecology of unicellular organisms - patterns and processes. Environ Microbiol Rep, 4(1), 10-22. Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., et al. (2015). Structure and function of the global ocean microbiome. Science, 348(6237), 1261359. Treusch, A. H., Vergin, K. L., Finlay, L. A., Donatz, M. G., Burton, R. M., Carlson, C. A., et al. (2009). Seasonality and vertical structure of microbial communities in an ocean gyre. The ISME Journal, 3(10), 1148-1163. Tseng, C. H., Chiang, P. W., Lai, H. C., Shiah, F. K., Hsu, T. C., Chen, Y. L., et al. (2015). Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea. BMC Genomics, 16(1), 219. Turk, V. (2001, 2001). Seasonal variability in phytoplankton and bacterioplankton distribution in the semi-enclosed temperate gulf (Gulf of Trieste, Adriatic Sea). Wang, J. J., Pan, F. Y., Soininen, J., Heino, J., Shen, J. (2016). Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nature Communications, 7(1), 13960. Wang, Y. H., Dai, C. F., Chen, Y. Y. (2007). Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophysical Research Letters, 34(18). Wu, J. F., Chung, S. W., Wen, L. S., Liu, K. K., Chen, Y. l. L., Chen, H. Y., et al. (2003). Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochemical Cycles, 17(1), 8-1-8-10. Xie, N., Hunt, D. E., Johnson, Z. I., He, Y., Wang, G. (2021). Annual Partitioning Patterns of Labyrinthulomycetes Protists Reveal Their Multifaceted Role in Marine Microbial Food Webs. Appl Environ Microbiol, 87(2). Yeh, Y. C., Peres Neto, P., Hunag, S. W., Lai, Y. C., Tu, C. Y., Shiah, F. K., et al. (2014). Determinism of bacterial metacommunity dynamics in the southern East China Sea varies depending on hydrography. Ecography, 38. Yin, J. Q., Huang, L. M., Li, K. Z., Lian, S. M., Li, C. L., Lin, Q. (2011). Abundance distribution and seasonal variations of Calanus sinicus (Copepoda: Calanoida) in the northwest continental shelf of South China Sea. Continental Shelf Research, 31(14), 1447-1456. Zhang, Y., Lu, Y., Wang, J. H., Xie, L., Xu, L., He, Y., et al. (2019). Diurnal variations of the microbial community in mesopelagic fish habitats of the northern slope of the south China sea. Deep Sea Research Part II: Topical Studies in Oceanography, 167, 55-61. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79699 | - |
| dc.description.abstract | 原核生物(prokaryotes)藉由物質循環影響海洋生態系,扮演重要角色。因此過往研究致力於調查影響原核生物群聚結構之因子,並顯示原核生物群聚的高變異性被多個環境因子影響,包含溫度、營養鹽、葉綠素和光線;但鮮少研究檢測群聚結構和環境的相關性是否受時空變化的影響。本篇研究於南海上相距330公里的兩個區域採集表層和葉綠素最大層之海水。同時,相同測站每三或六小時連續採集,持續兩天。以上步驟每年進行一次,共計三年(2016夏季、2017和2018秋季)。 本研究利用微生物體16S擴增子方法定序共計138個微生物樣本,以降趨對應分析(detrended correspondence analysis)和線性混合模式分析原核生物群聚結構、物種豐富度(richness)和環境間之相關性,以不同位置、深度和季節間變異作為隨機效應。 物種排序結果顯示原核生物的群聚結構、物種豐富度和溫度、無機氮、葉綠素濃度呈高度相關,其中,無機氮濃度對群聚結構的影響來自深度間變異,葉綠素濃度對群聚結構的影響來自季節間變異。再者,即使環境在兩日內變動不大,其因子仍影響群聚結構,但不影響物種豐富度。此結果說明區域效應(regional effect),如季節、深度和位置,影響群聚結構和相對豐度,但在地效應(local effect)只影響群聚結構。不同原核生物的生態功能,如自營、異營作用,導致其群聚結構同時被區域效應和在地環境影響。最後,結果顯示單日內原核生物相具高變異性,因此本研究建議若欲比較不同季節間海洋原核生物相變化,單日多次採集為佳,否則其季節間和單日內變化量將難以合理比較。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:07:59Z (GMT). No. of bitstreams: 1 U0001-2408202115010700.pdf: 1827058 bytes, checksum: cf1b331d12d3201cfe113de69f6a37a2 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Content 致謝 i 中文摘要 ii Abstract iii 1. Introduction 1 2. Materials and Methods 5 2.1 Study area 5 2.2 Sample collection 5 2.3 Sequencing analysis 7 2.4 Data analysis 9 3. Results 12 3.1 Dissimilarity of communities across tempo-spatial scales 12 3.2 Distribution of phylum groups in the northern SCS 13 3.3 Environmental factors affect prokaryotic community struture and diversity 14 3.4 Tempo-spatial scale dependency of the main environmental factors 14 3.5 Environmental factors affect the daily variation of prokaryotic communities 17 3.6 Environmental factors affect different functional groups of prokaryotes 17 4. Discussion 19 4.1 Temperature exhibited negative correlation with community structure and diversity 19 4.2 Chlorophyll-a concentration was a season-dependent factors of communities, while DIN concentration exhibited depth-dependent 20 4.3 The functional difference between heterotrophs and autotrophs 21 4.4 Potential effects of upwelling currents induced by internal waves 22 4.5 Magnitude of community variation within a day is similar to that across seasons 22 5. Figure 24 6. Table 34 7. References 39 8. Appendix 42 Figure Fig 1. Map illustrating the sampling site 24 Fig 2. Detailed sampling orders in three years 25 Fig 3. Analysis procedure in this study 26 Fig 4. Biplot of nMDS showing the relationships of communities across temp-spatial scales 27 Fig 5. ANOSIM analysis included (a) season, (b) depth, (c) site 28 Fig 6. Composition of dominant phylum groups for each sampling site and time 29 Fig 7. The relationships between DCA1 scores and (a) temperature, (b) DIN, (c) chlorophyll-a, and (d) PAR 31 Fig 8. The relationships between species richness and (a) temperature, (b) DIN, and (c) chlorophyll-a 32 Fig 9. Contour plors indicating environmental gradients underlying ordination of communities within a day 33 Table Table 1. Optimal models that explained the relationships between environmental factors versus community structure and diversity 34 Table 2. LMM results of relationships between community structure versus environmental factors, including (a) temperature, (b) DIN, (c) Chla, and (d) PAR 35 Table 3. LMM results of relationships between environmental factors versus species richness, including (a) temperature, (b) DIN, and (c) Chla 36 Table 4. Optimal models that explained the relationships between environmental factors versus the relative abundances of bacterial phyla 37 Table 5. LMM results of relationships between the relative abundance of bacterial phyla versus environmental factors 38 Appendix S1 Fig. Contour plots indicating environmental gradients underlying ordination of communities from DCA biplot 42 S2 Fig. ADCP plot of Cruise No.1184 in 2017 43 S3 Fig. Vertical profile of (a) temperature and (b) bacterial production (BP) when the internal wave occurred in Cruise No.1184, 2017 44 S4 Fig. Boxplot of dissimilarity of DCM-layer communities within summer (2016) and autumn (2017) versus the dissimilarity across two seasons 45 S1 Table. VIF values indicated multicollinearity among environmental variables 46 S2 Table. Detailed models selection of the relationships between the environmental factors versus community structure and diversity 47 S3 Table. Comparison of community-environment model among (1) linear regression model, (2) random intercept model, and (3) random slope model using ANOVA 48 S4 Table. Comparison of richness-environment model among (1) linear regression model, (2) random intercept model, and (3) random slope model using ANOVA 49 S5 Table. The relationship between DCA1 scores versus phyla relative abundance 50 S6 Table. Environmental variables from the SCS 51 S7 Table. Community composition depending on order level 53" | |
| dc.language.iso | en | |
| dc.title | 南海原核生物群聚結構的控制因子隨時空尺度之變異 | zh_TW |
| dc.title | The factors affect tempo-spatial variation of prokaryotic community structure at various scale in the South China Sea | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 于宏燦(Hsin-Tsai Liu),夏復國(Chih-Yang Tseng),湯森林,呂曉沛 | |
| dc.subject.keyword | 原核生物群聚結構,環境因子,區域效應, | zh_TW |
| dc.subject.keyword | Prokaryotic community structure,Environmental factor,regional effect, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202102676 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2408202115010700.pdf | 1.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
