請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79686完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖(Hsi-Sheng Goan) | |
| dc.contributor.author | Zhi-Yuan Chen | en |
| dc.contributor.author | 陳智圓 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:07:32Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-23T09:07:32Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-30 | |
| dc.identifier.citation | [1] Cheng Jiang, Spyros Tserkis, Kevin Collins, Sho Onoe, Yong Li, and Lin Tian. Switchable bipartite and genuine tripartite entanglement via an optoelectromechanical interface. Phys. Rev. A, 101:042320, Apr 2020. [2] Reed W Andrews, Robert W Peterson, Tom P Purdy, Katarina Cicak, Raymond W Simmonds, Cindy A Regal, and Konrad W Lehnert. Bidirectional and efficient conversion between microwave and optical light. Nature physics, 10(4):321–326, 2014. [3] H Jeff Kimble. The quantum internet. Nature, 453(7198):1023–1030, 2008. [4] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865–942, Jun 2009. [5] Sh Barzanjeh, D Vitali, P Tombesi, and GJ Milburn. Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Physical Review A, 84(4):042342, 2011. [6] Lin Tian. Robust photon entanglement via quantum interference in optomechanical interfaces. Physical review letters, 110(23):233602, 2013. [7] Ying-Dan Wang and Aashish A Clerk. Reservoir-engineered entanglement in optomechanical systems. Physical review letters, 110(25):253601, 2013. [8] Brian Julsgaard, Alexander Kozhekin, and Eugene S Polzik. Experimental long-lived entanglement of two macroscopic objects. Nature, 413(6854):400–403, 2001. [9] Lynden K Shalm, Deny R Hamel, Zhizhong Yan, Christoph Simon, Kevin J Resch, and Thomas Jennewein. Three-photon energy–time entanglement. Nature Physics, 9(1):19–22, 2013. [10] AJ Berkley, H Xu, RC Ramos, MA Gubrud, FW Strauch, PR Johnson, JR Anderson, AJ Dragt, CJ Lobb, and FC Wellstood. Entangled macroscopic quantum states in two superconducting qubits. Science, 300(5625):1548–1550, 2003. [11] Markus Aspelmeyer, Tobias J Kippenberg, and Florian Marquardt. Cavity optomechanics. Reviews of Modern Physics, 86(4):1391, 2014. [12] Kai Stannigel, Peter Rabl, Anders S Sørensen, Peter Zoller, and Mikhail D Lukin. Optomechanical transducers for long-distance quantum communication. Physical review letters, 105(22):220501, 2010. [13] D Andrew Golter, Thein Oo, Mayra Amezcua, Kevin A Stewart, and Hailin Wang. Optomechanical quantum control of a nitrogen-vacancy center in diamond. Physical review letters, 116(14):143602, 2016. [14] Kenneth W Allen, Yangcheng Li, and Vasily N Astratov. Reply to “comment on `super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis'[ann. phys.(berlin) 527, 513 (2015)]'. Annalen der Physik, 528(11-12):901–904, 2016. [15] Ying-Dan Wang and Aashish A Clerk. Using interference for high fidelity quantum state transfer in optomechanics. Physical review letters, 108(15):153603, 2012. [16] Lin Tian. Adiabatic state conversion and pulse transmission in optomechanical systems. Physical review letters, 108(15):153604, 2012. [17] Sh Barzanjeh, Mehdi Abdi, Gerard J Milburn, Paolo Tombesi, and David Vitali. Reversible optical-to-microwave quantum interface. Physical Review Letters, 109(13):130503, 2012. [18] Shabir Barzanjeh, ES Redchenko, Matilda Peruzzo, Matthias Wulf, DP Lewis, G Arnold, and Johannes M Fink. Stationary entangled radiation from micromechanical motion. Nature, 570(7762):480–483, 2019. [19] A Mari and Jens Eisert. Opto-and electro-mechanical entanglement improved by modulation. New Journal of Physics, 14(7):075014, 2012. [20] Chang-Sheng Hu, Zhi-Qiang Liu, Ye Liu, Li-Tuo Shen, Huaizhi Wu, and Shi-Biao Zheng. Entanglement beating in a cavity optomechanical system under two-field driving. Physical Review A, 101(3):033810, 2020. [21] Cheng-Hua Bai, Dong-Yang Wang, Shou Zhang, Shutian Liu, and Hong-Fu Wang. Strong mechanical squeezing in a standard optomechanical system by pump modulation. Physical Review A, 101(5):053836, 2020. [22] Andrea Mari and Jens Eisert. Gently modulating optomechanical systems. Physical Review Letters, 103(21):213603, 2009. [23] A. Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, Taylor Francis Group, 2017. [24] C. Gardiner, P. Zoller, and P. Zoller. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Series in Synergetics. Springer, 2004. [25] Daniel Hendrik Malz. Periodic driving and nonreciprocity in cavity optomechanics. PhD thesis, University of Cambridge, 2019. [26] Florent Lecocq, John D Teufel, Jose Aumentado, and Raymond W Simmonds. Resolving the vacuum fluctuations of an optomechanical system using an artificial atom. Nature Physics, 11(8):635–639, 2015. [27] Jens Eisert and MB Plenio. Introduction to the basics of entanglement theory in continuous-variable systems. International Journal of Quantum Information, 1(04):479–506, 2003. [28] Martin B Plenio and Shashank S Virmani. An introduction to entanglement theory. Quantum information and coherence, pages 173–209, 2014. [29] M. B. Plenio. Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett., 95:090503, Aug 2005. [30] Michael M Wolf, Geza Giedke, and J Ignacio Cirac. Extremality of gaussian quantum states. Physical review letters, 96(8):080502, 2006. [31] Spyros Tserkis and Timothy C Ralph. Quantifying entanglement in two-mode gaussian states. Physical Review A, 96(6):062338, 2017. [32] Spyros Tserkis, Sho Onoe, and Timothy C Ralph. Quantifying entanglement of formation for two-mode gaussian states: Analytical expressions for upper and lower bounds and numerical estimation of its exact value. Physical Review A, 99(5):052337, 2019. [33] W.P. Bowen and G.J. Milburn. Quantum Optomechanics. Taylor Francis, 2015. [34] Michael Y Li and Liancheng Wang. A criterion for stability of matrices. Journal of Mathematical Analysis and Applications, 225(1):249–264, 1998. [35] TA Palomaki, JD Teufel, RW Simmonds, and Konrad W Lehnert. Entangling mechanical motion with microwave fields. Science, 342(6159):710–713, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79686 | - |
| dc.description.abstract | 量子糾纏是量子通訊與量子計算的其中一個核心資源。其中,複合系統因為可以結合每個子系統的優勢,在實驗上以及理論上都有被研究,並且具有相當的潛力。許多量子計算、量子通訊以及量子感測的複合系統都牽涉到橋接光學頻段與微波頻段的光子。在這份工作中,我們研究如何藉由光機電介面來增強與控制光學頻段與微波頻段的光子的量子糾纏。我們考慮一個三光子共振腔與機械振子組成的複合系統,並且假設其中一個光子是微波頻段,另外兩個是微波頻段,或著是反過來。機械振子跟共振腔都有噪聲跟散逸。藉由強雷射的驅動,可以增強並且線性化光壓交互作用,以達到簡化分析的功用。我們採用成分的量子糾纏(entanglement of formation)來衡量雙系統的量子糾纏。在過去的研究中,研究人員解析地在頻率空間得到了最佳化的微波與光學光子的量子糾纏,其中所解的式子頻率被假定為零,且沒有考慮雷射驅動隨時間的變化。我們更近一步在時間域的量子糾纏,並且假定了隨時變的雷射驅動。而在最佳化方法的部分,我們使用傅立葉級數作為驅動函數的擬設,並且利用下山單純形演算法來求得最佳化參數,參數包含了驅動雷射的振幅與相位,其中,旋轉波近似並沒被使用。我們的結果展示了至少兩倍於微波與光學光子間的、最佳的、不隨時變驅動情況下的成分的量子糾纏。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:07:32Z (GMT). No. of bitstreams: 1 U0001-2508202110410000.pdf: 13369255 bytes, checksum: 0bbadde6a4354fd82206ed0567af7947 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 iii 誌謝 1 Acknowledgements 3 摘要 5 Abstract 7 1 Introduction 19 2 The Basic Concepts 23 2.1 Gaussian States of Continuous Variable Systems . . . . . . . . . . . . . . 23 2.1.1 Continuous Variables and Canonical Commutation Relations . . . 24 2.1.2 Quadratic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.3 Gaussian State . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.4 Covariance Matrix and First Moment . . . . . . . . . . . . . . . 26 2.2 Quantum Langevin Equation and Input-output Formalism . . . . . . . . . 27 2.2.1 Quantum Langevin Equation . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Input-output Formalism . . . . . . . . . . . . . . . . . . . . . . 29 2.3 Optomechanical System . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.1 Quantification of Quantum Entanglement . . . . . . . . . . . . . 31 2.4.2 Partial Transposition and Logarithmic Negativity . . . . . . . . . 32 2.4.3 Entanglement of Formation . . . . . . . . . . . . . . . . . . . . 34 3 System Dynamics 37 3.1 Model System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.2 Simplified Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.3 Initial Condition . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Potential Experimental Realization . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 Established Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.2 Possible Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Quantum Stochastic Differential Equation and Master Equation . . . . . . 45 3.3.1 Input-Output Formalism for Covariance Matrix . . . . . . . . . . 45 3.3.2 Ito and Stratonovich Form of Stochastic Differential equation . . 46 3.3.3 Derive Master Equation from Ito Form . . . . . . . . . . . . . . 47 3.3.4 Input-System Expectation Value . . . . . . . . . . . . . . . . . . 48 3.4 System Covariance Matrix Evolution . . . . . . . . . . . . . . . . . . . . 53 3.5 Ansatz for Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 Varying-frequency Ansatz . . . . . . . . . . . . . . . . . . . . . 55 3.5.2 Fourier Series Ansatz . . . . . . . . . . . . . . . . . . . . . . . . 55 3.6 Integrated Output Operator . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.7 Frequency Domain Solution . . . . . . . . . . . . . . . . . . . . . . . . 57 3.7.1 Heisenberg Equation in Frequency Domain . . . . . . . . . . . . 57 3.7.2 Frequency Domain and Time Domain Correspondence . . . . . . 60 4 Numerical Calculation and Optimization 63 4.1 Integrated Output Covariance Matrix . . . . . . . . . . . . . . . . . . . . 65 4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.1 Classical Evolution Stability . . . . . . . . . . . . . . . . . . . . 68 4.2.2 System Evolution Stability . . . . . . . . . . . . . . . . . . . . . 69 4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Results and Discussion 73 5.1 Frequency Domain Check . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Static Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 Entanglement of Formation versus Logarithmic Negativity . . . . . . . . 75 5.4 Average Excitation Number . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.5 Fourier Ansatz versus Frequency Ansatz . . . . . . . . . . . . . . . . . . 75 5.6 Optimization Time Choice . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.7 Integration Time Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.8 Output Optimization and System Optimization . . . . . . . . . . . . . . 78 5.9 Best Optimization Time for System . . . . . . . . . . . . . . . . . . . . 81 5.10 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Conclusions 103 A Optimized Parameters 107 A.1 Implementation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.2 Implementation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 A.3 Implementation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 A.4 Implementation 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 A.5 Implementation 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 A.6 Implementation 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.7 Implementation 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.8 Implementation 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A.9 Implementation 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Bibliography 113 | |
| dc.language.iso | en | |
| dc.title | 光機電介面下光學頻段與微波頻段的光量子糾纏最佳化 | zh_TW |
| dc.title | Optimal Entanglement between Microwave and Optical Photons via Optomechanical Interfaces | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-8051-4444 | |
| dc.contributor.oralexamcommittee | 林俊達(Hsin-Tsai Liu),李瑞光(Chih-Yang Tseng),陳岳男,周忠憲 | |
| dc.subject.keyword | 量子糾纏,量子計算,量子光學,光振子系統, | zh_TW |
| dc.subject.keyword | Entanglement,Quantum Computing,Quantum Optics,Optomechanical System, | en |
| dc.relation.page | 116 | |
| dc.identifier.doi | 10.6342/NTU202102833 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2508202110410000.pdf | 13.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
