請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79674完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武(Shiu-Wu Chau) | |
| dc.contributor.author | Chi-Seng Wong | en |
| dc.contributor.author | 黃子昇 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:07:08Z | - |
| dc.date.available | 2021-09-11 | |
| dc.date.available | 2022-11-23T09:07:08Z | - |
| dc.date.copyright | 2021-09-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-31 | |
| dc.identifier.citation | [1] H. Överstam, S. E. Lundberg M. Jarl, “Finite Element Modelling and Laboratory Simulation of High Speed Wire Rod Rolling in 3-Roll Stands”, Steel Research, Vol. 74, No. 7, pp. 431-443, 2003. [2] W. L. Roberts, Hot Rolling of Steel, Marcel Dekker, New York: Marcel Dekker Inc., 1983 [3] Y. T. Vashchenko, “Developing the Production of Bearing Tubes on Equipment with a Three-High Rolling Mill”, Metallurgist, Vol. 39, No. 3, pp. 165–167, 1960. [4] S. M. Gorbatyuk, V. M. Pavlov, A. N. Shapoval M. S. Gorbatyuk, “Experimental Use of Rotary Rolling Mills to Deform Compacts of Refractory Metals”, Metallurgist, Vol. 42, No. 5, 178-183, 1998. [5] T. M. Maccagno, J. J. Jonas, S. Yue, B. J. Mccrady, R. Slobodian D. Deeks, “Determination of Recrystallization Stop Temperature from Rolling Mill Logs and Comparison with Laboratory Simulation Results”, ISIJ International, Vol. 34, No. 11, pp. 917-922, 1994. [6] P. R. Cetlin, S. Yue, J. J. Jonas T. M. Maccagno, “Influence of Strain Rate on Interpass Softening During the Simulated Warm Rolling of Interstitial-Free Steels”, Metallurgical Transactions A, Vol. 24, pp. 1543-1553, 1993. [7] S. M. Hwang, M. S. Joun Y. H. Kang, “Finite Element Analysis of Temperatures, Metal Flow, and Roll Pressure in Hot Strip Rolling”, Engineering for Industry, Vol. 115, No. 3, pp. 290-298, 1993. [8] L. M. Galantucci L. Tricarico, “Thermo-Mechanical Simulation of a Rolling Process with an FEM Approach”, Materials Processing Technology, Vol. 92-93, pp. 494-501, 1999. [9] C. S. Li, X. H. Liu G. D. Wang, “Simulation on Temperature Field in Continuous 40Cr Steel Rolling by FEM”, Research on Iron Steel, Vol. 107, No. 2, pp. 35-63, 1999. [10] Y. Jun, K. Manabu, M. Hideyuki A. Motoo, “User-friendly 3D FEM Simulation System for Bar and Wire Rod Rolling Processes”, Tetsu-to-Hagane, Vol. 86, No. 7, pp. 452-457, 2000. [11] R. Fabik, J. Kliber, I. Mamuzic, T. Kubina S. A. Aksenov, “Mathematical Modelling of Flat and Long Hot Rolling Based on Finite Element Methods (FEM)”, Metabk, Vol. 51, pp. 341-344, 2012. [12] W. Kaiser H. Brauer, “New Mill for Specialty Steel Precision Bar Products”, Iron and Steel Engineer, Vol. 61, No. 6, pp. 72-79, 1984. [13] K. Komori, “Simulation of Deformation and Temperature in Multi-Pass Three-Roll Rolling”, Materials Processing Technology, Vol. 92-93, pp. 450-457, 1999. [14] B. L. Zheng, Z. Q. Li, W. C. Zhu X. H. Liu, “Analyzing on Stable Rolling of Y-Type Three High Mill”, Steel rolling, No. 6, pp. 6-8, 1996. [15] B. L. Zheng, W. C. Zhu J. Wang, “Studies on the Force Parameters of 3 Roll Mills”, Steel Wire Products, Vol. 23, No. 1, pp. 14-17,1997. [16] J. Kang, “New Design of Orifice of Domestically Made Continuous Rolling Mill with Three Rolls for Processing Aluminum Rods Through Fifteen Passes” Light Alloy Fabrication Technology, Vol. 35, No. 3, pp. 29-36, 2007 [17] J. H. Min, H. C. Kwon, Y. Lee, J. S. Woo Y. T. Im, “Analytical Model for Prediction of Deformed Shape in Three-Roll Rolling Process”, Materials Processing Technology, Vol. 140, pp. 471-477, 2003. [18] C. Overhagen P. J. Mauk, “A New Rolling Model for Three-Roll Rolling Mills”, Key Engineering Materials, Vol. 622-623, pp. 879-886, 2014. [19] C. Overhagen, “Roll Pass Design Methods for Three- and Four- Roll Rolling Mills Comparison and Analysis”, Proceedings of the 11th International Rolling Conference, Sao Paulo, 2019. [20] Y. Lee, S. Choi Y. H. Kim, “Mathematical Model and Experimental Validation of Surface Profile of a Workpiece in Round-Oval-Round Pass Sequence”, Materials Processing Technology, Vol. 108, pp. 87-96, 2000. [21] M. R. Shuai, Q. X. Huang, J. P. Qin Y. C. Zhu, “Analysis of Mechanical Parameters during Hot Continuous Rolling Process of Titanium Alloy TC11 Rod”, Rare Metal Materials and Engineering, Vol. 41, No. 6, pp. 952-957, 2012. [22] R. Rentsch E. Brinksmeier, “Experimental and Numerical Analysis on the Distortion of Parts Made of 20MnCr5 by Hot Metal Forming”, Proceedings of the 3rd International Conference on Distortion Engineering IDE, Bremen, 2011. [23] C. Recalcati, C. Ventura W. Rensch, “HRM High-Reduction Rolling Machine”, Wire Industry, Vol. 57, pp. 31-34, 1990. [24] M. H. Chang, Three-Dimensional Finite Element Analysis of Three-Roll Planetary Mill Processes, PhD Thesis, Department of Mechanical Engineering, National Sun Yat-sen University, 2001. [25] F. H. Tsai, Finite Element Analysis on Planetary Three-Roll Rolling, Master Thesis, Department of Mechanical Engineering, National Sun Yat-sen University, 2000. [26] T. Nishio, T. Noma, S. Karashige, H. Hino, T. Tsuta K. Kadota, “Development of Three-Roll Planetary Mill PSW”, Kawasaki Steel Technology, Rep. 84, pp. 81-90, 1995. [27] C. K. Shih C. Hung, “The Finite Element Analysis on Planetary Rolling Process”, Proceedings of the 23rd National Conference of Theoretical and Applied Mechanics, Taiwan, 1999. [28] C. K. Shih, C. Hung R. Q. Hsu, “The Finite Element Analysis on Planetary Rolling Process”, Material Processing Technology, Vol. 113, pp. 115-123, 2001. [29] C. K. Shih, R. Q. Hsu C. Hung, “A Study on Seamless Tube in the Planetary Rolling Process”, Material Processing Technology, Vol. 121, pp. 273-284, 2002. [30] Y. M. Hwang, H. H. Hsu G. Y. Tzou, “A Study of PSW Rolling Process Using Stream Functions”, Material Processing Technology, Vol. 80, pp. 341-344, 1998. [31] Y. M. Hwang, W. M. Tsai, F. H. Tsai I. Her, “Analytical and Experimental Study on the Spiral Marks of the Rolled Product During Three-Rolling Pletary Rolling Process”, Machine Tools and Manufacture, Vol. 46, pp. 1556-1562, 2006. [32] S. Kabayashi, S. I. Oh T. Altan, Metal Forming and Finite Method, New York: Oxford University Press, pp. 170-182, 1989. [33] C. H. Wu, Simulation and Analysis of Process Parameters for High Reduction Mill, Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2002. [34] L. F. Richardson, “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam”, Philosophical Transactions of Royal Society of London. Series A, Vol. 201, pp. 307-357, 1911. [35] C. Prinz, B. Clausen, F. Hoffmann, R. Kohlmann H. W. Zoch, “Metallurgical influence on distortion of the case-hardening steel 20MnCr5”, Materialwissenschaft und Werkstofftechnik, Vol. 37, No. 1, pp. 29-33, 2006 [36] Walsin Lihwa Corporation Yenshui Plant, private communication, 2021 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79674 | - |
| dc.description.abstract | 產線上熱軋工件於三輥式減縮軋延機組熱軋製程中的扭曲現象不但影響成品形狀、降低生產速率,同時可能對熱軋機台產生破壞風險。因此本研究使用有限元素法藉由數值方式模擬三輥式減縮軋延機組的連續軋延過程,即使用DEFORM-3D探討S303鋼胚於三輥式減縮軋延機組熱軋過程的產品塑性變形行為。本研究基於材料具有剛塑性以及鋼胚密度在軋延過程為常數的假設,分析成品有效應力、有效應變、有效應變率以及溫度等物理量的分布,藉以探討熱軋過程的加工特性。有效應力及有效應變率在材料和輥輪的接觸位置具有最大值,有效應變則隨著軋延長度累積增加,溫度則隨著軋延長度而逐漸降低,軋出成品的外觀特徵則具有扭曲效應,例如對稱圓柱鋼胚三輥式減縮軋延機組熱軋過程的模擬結果呈現成品尾部的扭曲效應最為顯著,最大扭曲角度可達70度。本研究同時探討鋼胚長度、鋼胚對稱性及輥輪形狀對於成品扭曲效應的影響。輥輪形狀對於成品的扭曲效應較顯著,但對於鋼胚形狀和長度關係較不明顯。在軋延過程中,應力分布具有不均勻性,因此鋼胚受力不對稱,隨著軋延扭曲效應的累積,產品扭曲角度逐漸增大。鋼胚對稱性對於成品的扭曲效應影響不大,不同初始長度鋼胚其成品扭曲具有相似的特性。熱軋過程使用不同形狀輥輪,其產品則具有不同的扭曲特性。本研究結果說明藉由成品內部應力的不均勻性可以預測扭曲的方向,以及成品扭曲現象主要來自軋延初期成品內部微量應力的不對稱性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:07:08Z (GMT). No. of bitstreams: 1 U0001-3108202100160300.pdf: 9419212 bytes, checksum: f9889b1a71efb0e006ba92131effcde6 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Abstract i 摘要 iii Contents v Nomenclature vii List of Figures xi List of Tables xvii Chapter 1 Introduction 1 1.1 Overview 1 1.2 Literature Review 6 Chapter 2 Mathematical Model 11 2.1 Hypothesis 11 2.2 Governing Equations 12 2.3 Material Properties 14 Chapter 3 Numerical Method 19 3.1 Numerical Method 19 3.2 Meshing 20 3.3 Boundary and Operation Condition 22 3.4 Discretization Error 24 Chapter 4 Numerical Results 27 4.1 Geometry 27 4.2 Case Description 33 4.3 Grid Dependency Study 34 4.4 Macroscopic Characteristics of Product 37 4.5 Section Properties 83 4.6 Validation and Verification 111 Chapter 5 Conclusions 115 References 117 | |
| dc.language.iso | en | |
| dc.title | 三輥式減縮軋延機組熱輥壓製程模擬 | zh_TW |
| dc.title | Simulation of Hot Rolling Process in Three-Roll Reduction Block | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃心豪(Hsin-Tsai Liu),莊水旺(Chih-Yang Tseng),王世明,林招松,陳夏宗 | |
| dc.subject.keyword | 三輥式減縮軋延機組,熱軋延,有限元素法,S303 不銹鋼,扭曲效應, | zh_TW |
| dc.subject.keyword | Three-Roll Reduction Block,Hot Rolling,Finite Element Method,DEFORM-3D,S302 Stainless Steel,Twisting Effect, | en |
| dc.relation.page | 119 | |
| dc.identifier.doi | 10.6342/NTU202102866 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3108202100160300.pdf | 9.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
