請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79671完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(Chih-Chung Yang) | |
| dc.contributor.author | You-Jui Lu | en |
| dc.contributor.author | 呂祐叡 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:07:02Z | - |
| dc.date.available | 2021-09-02 | |
| dc.date.available | 2022-11-23T09:07:02Z | - |
| dc.date.copyright | 2021-09-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-31 | |
| dc.identifier.citation | 1.Förster, T. Energy Transport and Fluorescence. Naturwissenschaften 1946, 6, 166-175. 2.Stryer, L. Fluorescence Energy Transfer as a Spectroscopic Ruler. Annu. Rev. Biochem. 1978, 47, 819-846. 3.Achermann, M.; Petruska, M. A.; Kos, A.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Energy-Transfer Pumping of Semiconductor Nanocrystals Using an Epitaxial Quantum Well. Nature 2004, 429, 642-646. 4.Yu, J.; Wang, L.; Yang, D.; Hao, Z.; Luo, Y.; Sun, C.; Han, Y.; Xiong, B.; Wang, J.; Li, H. Improving the Internal Quantum Efficiency of Green InGaN Quantum Dots through Coupled InGaN/GaN Quantum Well and Quantum Dot Structure. Appl. Phys. Express 2015, 8, 094001. 5.Kaiser, U.; Jimenez de Aberasturi, D.; Vazquez-Gonzalez, M.; Carrillo-Carrion, C.; Niebling, T.; Parak, J. W.; Heimbrodt, W. Determining the Exact Number of Dye Molecules Attached to Colloidal CdSe/ZnS Quantum Dots in Förster Resonant Energy Transfer Assemblies. J. Appl. Phys. 2015, 117, 024701. 6.Kuriakose, A. C.; Nampoori, V. P. N.; Thomas, S. Energy Transfer Kinetics in Basic Fuchsin Dye Sensitized CdS Quantum Dots. Mater. Chem. Phys. 2020, 242, 122560. 7.Boeneman, K.; Prasuhn, D. E.; Blanco-Canosa, J. B.; Dawson, P. E.; Melinger, J. S.; Ancona, M.; Stewart, M. H.; Susumu, K.; Huston, A.; Medintz, I. L. Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires. J. Am. Chem. Soc. 2010, 132, 18177-18190. 8.Mandal, S.; Iglesias, M. G.; Ince, M.; Torres, T.; Tkachenko, N. V. Photoinduced Energy Transfer in ZnCdSeS Quantum Dot Phthalocyanines Hybrids. ACS Omega 2018, 3, 10048-10057. 9.Tse, W. F.; Wu, R. N.; Lu, C. C.; Hsu, Y. C.; Chen, Y. P.; Kuo, S. Y.; Su, Y. C.; Wu, P. H.; Kuo, Y.; Kiang, Y. W. et al. Spatial Range of the Plasmonic Dicke Effect in an InGaN/GaN Multiple Quantum Well Structure. Nanotechnology 2020, 31, 295001. 10.Neogi, A.; Lee, C. W.; Everitt, H. O.; Kuroda, T.; Tackeuchi, A.; Yablonovitch, E. Enhancement of Spontaneous Recombination Rate in a Quantum Well by Resonant Surface Plasmon Coupling. Phys. Rev. B. 2002, 66, 153305. 11.Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-Plasmon-Enhanced Light Emitters Based on InGaN Quantum Wells. Nat. Mater. 2004, 3, 601-605. 12.Sun, G.; Khurgin, J. B.; Soref, R. A. Practicable Enhancement of Spontaneous Emission Using Surface Plasmons. Appl. Phys. Lett. 2007, 90, 111107. 13.Yeh, D. M.; Huang, C. F.; Chen, C. Y.; Lu, Y. C.; Yang, C. C. Surface Plasmon Coupling Effect in an InGaN/GaN Single-Quantum-Well Light-Emitting Diode. Appl. Phys. Lett. 2007, 91, 171103. 14.Tsai, F. J.; Wang, J. Y.; Huang, J. J.; Kiang, Y. W.; Yang, C. C. Absorption Enhancement of an Amorphous Si Solar Cell through Surface Plasmon-Induced Scattering with Metal Nanoparticles. Opt. Express 2010, 18, A207-A220. 15.Pillai, S.; Catchpole, K. R.; Trupke, T.; Green, M. A. Surface Plasmon Enhanced Silicon Solar Cells. J. Appl. Phys. 2007, 101, 093105. 16.Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nature Mater. 2010, 9, 205-213. 17.Zhu, J.; Hsu, C. M.; Yu, Z.; Fan, S.; Cui, Y. Nanodome Solar Cells with Efficient Light Management and Self-Cleaning. Nano Lett. 2010, 10, 1979-1984. 18.Nie, S.; Emory, S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102-1106. 19.Gillibert, R.; Sarkar, M.; Bryche, J. F.; Yasukuni, R.; Moreau, J.; Besbes, M.; Barbillon, G.; Bartenlian, B.; Canva, M.; Chapelle, M. L. Directional Surface Enhanced Raman Scattering on Gold Nano-Gratings. Nanotechnology 2016, 27, 115202. 20.Yue, W.; Wang, Z.; Whittaker, J.; Lopez-royo, F.; Yang, Y. V.; Zayats, A. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers. J. Mater. Chem. C. 2017, 5, 4075-4084. 21.Kuo, Y.; Ting, S. Y.; Liao, C. H.; Huang, J. J.; Chen, C. C.; Hsieh, C.; Lu, Y. C.; Chen, C. Y.; Shen, K. C.; Lu, C. F. et al. Surface Plasmon Coupling with Radiating Dipole for Enhancing the Emission Efficiency of a Light-Emitting Diode. Opt. Express 2011, 19, A914-A929. 22.Chu, C. K.; Tu, Y. C.; Hsiao, J. H.; Yu, J. H.; Yu, C. K.; Chen, S. Y.; Tseng, P. H.; Chen, S.; Kiang, Y. W.; Yang, C. C. Combination of Photothermal and Photodynamic Inactivation of Cancer Cell through Surface Plasmon Resonance of Gold Nanoring. Nanotechnology 2016, 27, 115102. 23.Chu, C. K.; Tu, Y. C.; Chang, Y. W.; Chu, C. K.; Chen, S. Y.; Chi, S. Y.; Chi, T. T.; Kiang, Y. W.; Yang, C. C. Cancer Cell Uptake Behavior of Au Nanoring and Its Localized Surface Plasmon Resonance Induced Cell Inactivation. Nanotechnology 2015, 26, 075102. 24.Tobias, A. K.; Jones, M. Metal-Enhanced Fluorescence from Quantum Dot-Coupled Gold Nanoparticles. J. Phys. Chem. C 2019, 123, 1389-1397. 25.Hu, S.; Ren, Y.; Wang, Y.; Li, J.; Qu, J.; Liu, L.; Ma, H.; Tang, Y. Surface Plasmon Resonance Enhancement of Photoluminescence Intensity and Bioimaging Application of Gold Nanorod@CdSe/ZnS Quantum Dots. Beilstein J. Nanotechnol. 2019, 10, 22-31. 26.Huang, Q.; Chen, J.; Zhao, J.; Pan, J.; Lei, W.; Zhang, Z. Enhanced Photoluminescence Property for Quantum Dot-Gold Nanoparticle Hybrid. Nanoscale Res. Lett. 2015, 10, 400. 27.Wang, Y.; Jin, Y.; Zhang, T.; Huang, Z.; Yang, H.; Wang, J.; Jiang, K.; Fan, S.; Li. Q. Emission Enhancement from CdSe/ZnS Quantum Dots Induced by Strong Localized Surface Plasmonic Resonances without Damping. J. Phys. Chem. Lett. 2019, 10, 2113-2120. 28.Ghenuche, P.; Mivelle, M.; de Torres, J.; Moparthi, S. B.; Rigneault, H.; Hulst, N. F. V.; Parajó, M. F. G.; Wenger, J. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates. Nano Lett. 2015, 15, 6193-6201. 29.Ozel, T.; Martinez, P. L. H.; Mutlugun, E.; Akin, O.; Nizamoglu, S.; Ozel, I. O.; Zhang, Q.; Xiong, Q.; Demir, H. V. Observation of Selective Plasmon-Exciton Coupling in Nonradiative Energy Transfer: Donor-Selective versus Acceptor-Selective Plexcitons. Nano Lett. 2013, 13, 3065-3072. 30.Richard, H. P. P.; Couture, M.; Brulea, T.; Masson, J. F. Metal-Enhanced Fluorescence and FRET on Nanohole Arrays Excited at Angled Incidence. Analyst 2015, 140, 4792. 31.Lunz, M.; Gerard, V. A.; Gun’ko, Y. K.; Lesnyak, V.; Gaponik, N.; Susha, A. S.; Rogach, A. L.; Bradley, A. L. Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers. Nano Lett. 2011, 11, 3341-3345. 32.Zhang, X.; Marocico, C. A.; Lunz, M.; Gerard, V. A.; Gun’ko, Y. K.; Lesnyak, V.; Gaponik, N.; Susha, A. S.; Rogach, A. L.; Bradley, A. L. Experimental and Theoretical Investigation of the Distance Dependence of Localized Surface Plasmon Coupled Förster Resonance Energy Transfer. ACS Nano 2014, 8, 1273-1283. 33.Jang, Y. J.; Kawaguchi, D.; Yamaguchi, S.; Lee, S.; Lim, J. W.; Kim, H.; Tanaka, K.; Kim, D. H. Enhancing the Organic Solar Cell Efficiency by Combining Plasmonic and Förster Resonance Energy Transfer (FRET) Effects. J. Power Sources 2019, 438, 227031. 34.Kim, K. S.; Kim, J. H.; Kim, H.; Laquai, F.; Eric, A.; Lee, J. K.; Seong, Y.; Sohn, B. H. Switching off FRET in the Hybrid Assemblies of Diblock Copolymer Micelles, Quantum Dots, and Dyes by Plasmonic Nanoparticles. ACS Nano 2012, 6, 5051-5059. 35.Hsu, L. Y.; Ding, W.; Schatz, G. C. Plasmon-Coupled Resonance Energy Transfer. J. Phys. Chem. Lett. 2017, 8, 2357–2367 36.Wu, J. S.; Lin, Y. C.; Sheu, Y. L.; Hsu, L. Y. Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2018, 9, 7032–7039 37.Jeong, Y.; Schatz, G. C. Enhancement and Suppression of Resonance Energy Transfer Near Metal Nanoparticles. J. Phys. Chem. C 2020, 124, 20589–20597 38.Lee, M. W.; Hsu, L. Y. Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons. J. Phys. Chem. Lett. 2020, 11, 6796–6804. 39.Yang, H.; Xi, X.; Yu, Z.; Cao, H.; Li, J.; Lin, S.; Ma, Z.; Zhao, L. Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure. ACS Appl. Mater. Interfaces 2018, 10, 5492-5497. 40.Huang, S.; Zhang, Y.; Leung, B.; Yuan, G.; Wang, G.; Jiang, H.; Fan, Y.; Sun, Q.; Wang, J.; Xu, K.; Han, J. Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films. ACS Appl. Mater. Interfaces 2013, 5, 11074-11079. 41.Schwab, M. J.; Chen, D.; Han, J.; Pfefferle, L. D. Aligned Mesopore Arrays in GaN by Anodic Etching and Photoelectrochemical Surface Etching. J. Phys. Chem. C 2013, 117, 16890-16895. 42.Schwab, M. J.; Han, J.; Pfefferle, L. D. Neutral Anodic Etching of GaN for Vertical or Crystallographic Alignment. Appl. Phys. Lett. 2015, 106, 241603. 43.Tseng, W. J.; van Dorp, D. H.; Lieten, R. R.; Vereecken, P. M.; Borghs, G. Anodic Etching of n-GaN Epilayer into Porous GaN and Its Photoelectrochemical Properties. J. Phys. Chem. C 2014, 118, 29492-29498. 44.Chen, D.; Xiao, H.; Han, J. Nanopores in GaN by Electrochemical Anodization in Hydrofluoric Acid Formation and Mechanism. J. Appl. Phys. 2012, 112, 064303. 45.Najar, A.; Gerland, M.; Jouiad, M. Porosity-Induced Relaxation of Strains in GaN Layers Studied by Means of Microindentation and Optical Spectroscopy. J. Appl. Phys. 2012, 111, 093513. 46.Zhang, C.; Park, S. H.; Chen, D.; Lin, D. W.; Xiong, W.; Kuo, H. C.; Lin, C. F.; Cao, H.; Han, J. Mesoporous GaN for Photonic Engineering Highly Reflective GaN Mirrors as an Example. ACS Photon. 2015, 2, 980-986. 47.Zhang, Y.; Sun, Q.; Leung, B.; Simon, J.; Lee, M. L.; Han, J. The Fabrication of Large-Area, Free-Standing GaN by a Novel Nanoetching Process. Nanotechnology 2011, 22 045603. 48.Kang, J. H.; Li, B.; Zhao, T.; Ali Johar, M.; Lin, C. C.; Fang, Y. H.; Kuo, W. H.; Liang, K. L.; Hu, S.; Ryu, S. W.; Han, J. RGB Arrays for Micro-Light-Emitting Diode Applications Using Nanoporous GaN Embedded with Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 30890-30895. 49.Soh, C. B.; Tay, C. B.; Tan, R. J. N.; Vajpeyi, A. P.; Seetoh, I. P.; Ansah-Antwi, K. K.; Chua, S. J. Nanopore Morphology in Porous GaN Template and Its Effect on the LEDs Emission. J. Phys. D: Appl. Phys. 2013, 46, 365102. 50.Radzali, R.; Zainal, N.; Yam, F. K.; Hassan, Z. Characteristics of Porous GaN Prepared by KOH Photoelectrochemical Etching. Mater. Res. Innovations 2014, 18, S6-412-416. 51.Li, Y.; Wang, C.; Zhang, Y.; Hu, P.; Zhang, S.; Du, M.; Su, X.; Li, Q.; Yun, F. Analysis of TM/TE Mode Enhancement and Droop Reduction by a Nanoporous n-AlGaN Underlayer in a 290 nm UV-LED. Photon. Res. 2020, 8, 806-811. 52.Kuo, Y.; Ting, S. Y.; Liao, C. H.; Huang, J. J.; Chen, C. Y.; Hsieh, C.; Lu, Y. C.; Chen, C. Y.; Shen, K. C.; Lu, C. F.; Yeh, D. M.; Wang, J. Y.; Chuang, W. H.; Kiang, Y. W.; Yang, C. C. Surface Plasmon Coupling with Radiating Dipole for Enhancing the Emission Efficiency of a Light-Emitting Diode. Opt. Express 2011, 19, A914-A929. 53.Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, 1991). 54.E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79671 | - |
| dc.description.abstract | 本研究中用電偶極模擬量子井與量子點來探討於氮化鎵孔洞結構中量子井和量子點與表面銀奈米顆粒的表面電漿子耦合及表面電漿子耦合條件下從量子井到量子點共振能量轉移的行為。我們先計算僅有量子井時不同的氮化鎵孔洞結構所造成的表面電漿子耦合及腔體效應下於量子點電場強度的比值,再考慮量子點的輻射強度比例,相乘結果可以看出銀奈米顆粒造成的表面電漿子耦合及腔體效應會於空腔內形成一個電場極大的熱點。由於受體的吸收功率正比於電場的平方值,因此該結構可以大幅增加能量轉換的效率。然而當偶極極化方向平行於管狀空隙軸時,就少了空隙側壁的腔體效應,使得能量轉換效率降低。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:07:02Z (GMT). No. of bitstreams: 1 U0001-3108202110250200.pdf: 7697723 bytes, checksum: b34e68291a3b44c2404f2b6c2dab2276 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 中文摘要 iii Abstract iv Contents v List of Figure vii List of Table xi Chapter 1 Introduction 1 1.1 Förster resonance energy transfer (FRET) 1 1.2 Surface plasmon coupling 1 1.3 Surface plasmon coupling effect on Förster resonance energy transfer 2 1.4 GaN porous structures 3 1.5 Research motivations 4 1.6 Thesis structure 5 Chapter 2 Simulation Structures and Methods 8 2.1 Simulation structures 8 2.2 Simulation methods 9 Chapter 3 Simulation Results of Plane Wave Transmission 17 3.1 Transmission results with plane wave incidence from the air side (downward transmission) 17 3.2 Transmission results with plane wave incidence from the GaN side (upward transmission) 18 Chapter 4 Simulation Results of Surface Plasmon Coupling 28 4.1 Results of donor emission 28 4.2 Results of acceptor emission 32 4.3 Resonance energy transfer enhancement 34 Chapter 5 Conclusions 72 References 73 | |
| dc.language.iso | en | |
| dc.title | 在具方向性氮化鎵孔洞結構內表面電漿子耦合與共振能量轉換行為的模擬研究 | zh_TW |
| dc.title | Simulation Study on the Surface Plasmon Coupling and Resonance Energy Transfer Behaviors in an Oriented GaN Porous Structure | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭仰(Hsin-Tsai Liu),蕭惠心(Chih-Yang Tseng) | |
| dc.subject.keyword | 表面電漿子耦合,共振能量轉換,模擬,氮化鎵,方向性,孔洞結構, | zh_TW |
| dc.subject.keyword | Surface Plasmon Coupling,Resonance Energy Transfer,Simulation,GaN,Oriented,Porous Structure, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202102876 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3108202110250200.pdf | 7.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
