Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李克強(Eric Lee)
dc.contributor.authorFang-Yi Wuen
dc.contributor.author吳芳儀zh_TW
dc.contributor.authorf05423001
dc.date.accessioned2022-11-23T09:06:57Z-
dc.date.available2021-09-11
dc.date.available2022-11-23T09:06:57Z-
dc.date.copyright2021-09-11
dc.date.issued2021
dc.date.submitted2021-09-01
dc.identifier.citation1. Twardeck, T., Effect of parameter variations on drop placement in an electrostatic ink jet printer. IBM Journal of Research and Development, 1977. 21(1): p. 31-36. 2. Osborn, H.T. and C.C. Akoh, Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions. Food Chemistry, 2004. 84(3): p. 451-456. 3. Wells, W.F., Airborne Contagion and Air Hygiene. An Ecological Study of Droplet Infections. Airborne Contagion and Air Hygiene. An Ecological Study of Droplet Infections., 1955. 4. Allen, T.M. and P.R. Cullis, Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews, 2013. 65(1): p. 36-48. 5. Azmi, N.A.N., et al., Nanoemulsions: factory for food, pharmaceutical and cosmetics. Processes, 2019. 7(9): p. 617. 6. Li, Z., et al., Effects of space sizes on the dispersion of cough-generated droplets from a walking person. Physics of Fluids, 2020. 32(12): p. 121705. 7. Danielsson, I., The definition of microemulsion. 1981. 8. Lawrence, M.J. and G.D. Rees, Microemulsion-based media as novel drug delivery systems. Advanced drug delivery reviews, 2000. 45(1): p. 89-121. 9. Spernath, A. and A. Aserin, Microemulsions as carriers for drugs and nutraceuticals. Advances in colloid and interface science, 2006. 128: p. 47-64. 10. Pifferi, G. and P. Restani, The safety of pharmaceutical excipients. Il Farmaco, 2003. 58(8): p. 541-550. 11. Kalam, M.A., et al., Delivery of gatifloxacin using microemulsion as vehicle: formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug delivery, 2016. 23(3): p. 886-897. 12. Bharti, S.K. and K. Kesavan, Phase-transition W/O microemulsions for ocular delivery: Evaluation of antibacterial activity in the treatment of bacterial keratitis. Ocular immunology and inflammation, 2017. 25(4): p. 463-474. 13. Dantas, T., et al., MICROEMULSIONS AND NANOEMULSIONS APPLIED TO WELL STIMULATION AND ENHANCED OIL RECOVERY (EOR). Brazilian Journal of Petroleum and Gas, 2019. 12: p. 251-265. 14. Lipfert, J., et al., Size and shape of detergent micelles determined by small-angle X-ray scattering. The journal of physical chemistry B, 2007. 111(43): p. 12427-12438. 15. Chamieh, J., et al., Size characterization of commercial micelles and microemulsions by Taylor dispersion analysis. International journal of pharmaceutics, 2015. 492(1-2): p. 46-54. 16. Mitchell, D.J. and B.W. Ninham, Micelles, vesicles and microemulsions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1981. 77(4): p. 601-629. 17. Hunter, R.J., Foundations of colloid science. 2001: Oxford university press. 18. McClements, D.J., Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft matter, 2012. 8(6): p. 1719-1729. 19. Olusanya, T.O., et al., Liposomal drug delivery systems and anticancer drugs. Molecules, 2018. 23(4): p. 907. 20. El-Badry, M., G. Fetih, and F. Shakeel, Comparative topical delivery of antifungal drug croconazole using liposome and micro-emulsion-based gel formulations. Drug delivery, 2014. 21(1): p. 34-43. 21. Cortesi, R. and C. Nastruzzi, Liposomes, micelles and microemulsions as new delivery systems for cytotoxic alkaloids. Pharmaceutical science technology today, 1999. 2(7): p. 288-298. 22. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery, 2005. 4(2): p. 145-160. 23. Akbarzadeh, A., et al., Liposome: classification, preparation, and applications. Nanoscale research letters, 2013. 8(1): p. 1-9. 24. Bozzuto, G. and A. Molinari, Liposomes as nanomedical devices. International journal of nanomedicine, 2015. 10: p. 975. 25. Hamada, T. and K. Yoshikawa, Cell-sized liposomes and droplets: real-world modeling of living cells. Materials, 2012. 5(11): p. 2292-2305. 26. Kisel, M., et al., Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat. International journal of pharmaceutics, 2001. 216(1-2): p. 105-114. 27. Celebi, N., et al., Evaluation of microemulsion and liposomes as carriers for oral delivery of transforming growth factor alpha in rats. Journal of microencapsulation, 2012. 29(6): p. 539-548. 28. Kazunori, K., et al., Block copolymer micelles as vehicles for drug delivery. Journal of controlled release, 1993. 24(1-3): p. 119-132. 29. Kapoor, M., S.L. Lee, and K.M. Tyner, Liposomal drug product development and quality: current US experience and perspective. The AAPS journal, 2017. 19(3): p. 632-641. 30. Çağdaş, M., A.D. Sezer, and S. Bucak, Liposomes as potential drug carrier systems for drug delivery. Application of nanotechnology in drug delivery, 2014: p. 1-100. 31. Riaz, M.K., et al., Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. International journal of molecular sciences, 2018. 19(1): p. 195. 32. Wolf, P., The nature and significance of platelet products in human plasma. British journal of haematology, 1967. 13(3): p. 269-288. 33. Valadi, H., et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology, 2007. 9(6): p. 654-659. 34. Hessvik, N.P. and A. Llorente, Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 2018. 75(2): p. 193-208. 35. Bunggulawa, E.J., et al., Recent advancements in the use of exosomes as drug delivery systems. Journal of Nanobiotechnology, 2018. 16(1): p. 1-13. 36. Midekessa, G., et al., Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability. ACS omega, 2020. 5(27): p. 16701-16710. 37. Hofmann, L., et al., The emerging role of exosomes in diagnosis, prognosis, and therapy in head and neck cancer. International Journal of Molecular Sciences, 2020. 21(11): p. 4072. 38. El-Naas, M. and M.A. Alhaija, Modelling of adsorption processes. Mathematical Modelling, 2013: p. 579-600. 39. Healy, T.W. and L.R. White, Ionizable surface group models of aqueous interfaces. Advances in Colloid and Interface Science, 1978. 9(4): p. 303-345. 40. Hamid, M., et al. Dielectric properties of natural ester oils used for transformer application under temperature variation. in 2016 IEEE International Conference on Power and Energy (PECon). 2016. IEEE. 41. Schnitzer, O., I. Frankel, and E. Yariv, Electrophoresis of bubbles. Journal of fluid mechanics, 2014. 753: p. 49. 42. Ohshima, H., T.W. Healy, and L.R. White, Electrokinetic phenomena in a dilute suspension of charged mercury drops. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1984. 80(12): p. 1643-1667. 43. Li, M. and D. Li, Redistribution of mobile surface charges of an oil droplet in water in applied electric field. Advances in colloid and interface science, 2016. 236: p. 142-151. 44. Ichikawa, T., T. Dohda, and Y. Nakajima, Stability of oil-in-water emulsion with mobile surface charge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 279(1-3): p. 128-141. 45. Kumari, N., V. Bahadur, and S. Garimella, Electrical actuation of dielectric droplets. Journal of Micromechanics and Microengineering, 2008. 18(8): p. 085018. 46. Taylor, T. and A. Acrivos, On the deformation and drag of a falling viscous drop at low Reynolds number. Journal of Fluid Mechanics, 1964. 18(3): p. 466-476. 47. Eow, J.S., M. Ghadiri, and A. Sharif, Experimental studies of deformation and break-up of aqueous drops in high electric fields. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003. 225(1-3): p. 193-210. 48. Wang, C., et al., Electrokinetic motion of a submerged oil droplet near an air–water interface. Chemical Engineering Science, 2018. 192: p. 264-272. 49. Hase, M., S.N. Watanabe, and K. Yoshikawa, Rhythmic motion of a droplet under a dc electric field. Physical Review E, 2006. 74(4): p. 046301. 50. Grahame, D.C., The electrical double layer and the theory of electrocapillarity. Chemical reviews, 1947. 41(3): p. 441-501. 51. Stern, O., The theory of the electrolytic double-layer. Z. Elektrochem, 1924. 30(508): p. 1014-1020. 52. Masliyah, J.H. and S. Bhattacharjee, Electrokinetic and colloid transport phenomena. 2006: John Wiley Sons. 53. Lee, E., Theory of Electrophoresis and Diffusiophoresis of Highly Charged Colloidal Particles. Vol. 26. 2018: Academic Press. 54. Rashidi, M., M. Zargartalebi, and A.M. Benneker, Mechanistic studies of droplet electrophoresis: A review. Electrophoresis, 2021. 42(7-8): p. 869-880. 55. O'Farrell, P.H., High resolution two-dimensional electrophoresis of proteins. Journal of biological chemistry, 1975. 250(10): p. 4007-4021. 56. Abramson, H.A., L.S. Moyer, and M.H. Gorin, Electrophoresis of proteins and the chemistry of cell surfaces. Electrophoresis of Proteins and the Chemistry of Cell Surfaces., 1942. 57. Ou, X., et al., Microfluidic chip electrophoresis for biochemical analysis. Journal of separation science, 2020. 43(1): p. 258-270. 58. Pethig, R., Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics, 2010. 4(2): p. 022811. 59. Staffeld, P.O. and J.A. Quinn, Diffusion-induced banding of colloid particles via diffusiophoresis: 1. Electrolytes. Journal of colloid and interface science, 1989. 130(1): p. 69-87. 60. Annunziata, O., D. Buzatu, and J.G. Albright, Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions. The Journal of Physical Chemistry B, 2012. 116(42): p. 12694-12705. 61. Seo, M., et al., Continuous and spontaneous nanoparticle separation by diffusiophoresis. Lab on a Chip, 2020. 20(22): p. 4118-4127. 62. Talbot, L., et al., Thermophoresis of particles in a heated boundary layer. Journal of fluid mechanics, 1980. 101(4): p. 737-758. 63. Piazza, R. and A. Parola, Thermophoresis in colloidal suspensions. Journal of Physics: Condensed Matter, 2008. 20(15): p. 153102. 64. Zheng, F., Thermophoresis of spherical and non-spherical particles: a review of theories and experiments. Advances in colloid and interface science, 2002. 97(1-3): p. 255-278. 65. Pamme, N. and C. Wilhelm, Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab on a Chip, 2006. 6(8): p. 974-980. 66. Lim, J., et al., Magnetophoresis of nanoparticles. Acs Nano, 2011. 5(1): p. 217-226. 67. Dagher, S., et al., Utilizing Continuous Flow Microdevices-based Magnetophoresis for COVID-19 Diagnosis. 2020. 68. Smoluchowski, M., An experiment on mathematical theorization of coagulation kinetics of the colloidal solutions. Zeitschrift fur physikalisch Chemie, 1917. 92: p. 129-168. 69. Hückel, E., The cataphoresis of the sphere. Phys. Z, 1924. 25: p. 204-210. 70. Henry, D., The cataphoresis of suspended particles. Part I.—The equation of cataphoresis. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1931. 133(821): p. 106-129. 71. Baygents, J.C. and D. Saville, Electrophoresis of drops and bubbles. Journal of the Chemical Society, Faraday Transactions, 1991. 87(12): p. 1883-1898. 72. Ohshima, H., Electrophoretic mobility of a liquid drop in a salt-free medium. Journal of colloid and interface science, 2003. 263(1): p. 333-336. 73. O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978. 74: p. 1607-1626. 74. Lee, E., J.-K. Hu, and J.-P. Hsu, Electrophoresis of concentrated mercury drops. Journal of colloid and interface science, 2003. 257(2): p. 250-257. 75. Lee, E., S.-H. Lou, and J.-P. Hsu, Electrophoresis of a non-conducting Newtonian drop of low electrical potential normal to a plane. Chemical engineering science, 2006. 61(14): p. 4550-4557. 76. Huang, C.-H. and E. Lee, Electrophoretic motion of a liquid droplet in a cylindrical pore. The Journal of Physical Chemistry C, 2012. 116(28): p. 15058-15067. 77. Liao, C., et al., Electrophoretic motion of a liquid droplet and a bubble normal to an air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. 507: p. 124-133. 78. Tiselius, A., The moving boundary method of studying the electrophoresis of proteins. Nova Acta Regiae Soc. Sci. Uppsala, Ser. 4, 1930. 7(4): p. 1-107. 79. Westermeier, R., Electrophoresis in practice: a guide to methods and applications of DNA and protein separations. 2006: John Wiley Sons. 80. Jorgenson, J.W. and K.D. Lukacs, Zone electrophoresis in open-tubular glass capillaries. Analytical chemistry, 1981. 53(8): p. 1298-1302. 81. Jorgenson, J.W. and K.D. Lukacs, High-resolution separations based on electrophoresis and electroosmosis. Journal of chromatography A, 1981. 218: p. 209-216. 82. Grossman, P.D. and J.C. Colburn, Capillary electrophoresis: Theory and practice. 2012: Academic Press. 83. Lu, G., et al., Capillary electrophoresis separations of glycans. Chemical reviews, 2018. 118(17): p. 7867-7885. 84. Hong, T., et al., Capillary electrophoretic method for Staphylococcus aureus detection by using a novel antimicrobial peptide. Electrophoresis, 2021. 42(11): p. 1217-1220. 85. Poulsen, N.N., et al., Automated coating procedures to produce poly (ethylene glycol) brushes in fused‐silica capillaries. Journal of separation science, 2017. 40(3): p. 779-788. 86. Fu, Q., et al., A facile and versatile approach for controlling electroosmotic flow in capillary electrophoresis via mussel inspired polydopamine/polyethyleneimine co-deposition. Journal of Chromatography A, 2015. 1416: p. 94-102. 87. Moreno-Gordaliza, E., et al., Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations. Analytica chimica acta, 2016. 923: p. 89-100. 88. Sarkar, P. and P.S. Nicholson, Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 1996. 79(8): p. 1987-2002. 89. Zhang, C., et al., Controllable design of various microstructures for hydroxyapatite coatings by electrophoresis deposition process for biomedical applications. Journal of The Electrochemical Society, 2019. 166(13): p. D700. 90. Guan, S., et al., Enhanced photocatalytic activity and stability of TiO2/graphene oxide composites coatings by electrophoresis deposition. Materials Letters, 2021. 286: p. 129258. 91. Voldman, J., ELECTRICAL FORCES FOR MICROSCALE CELL MANIPULATION. Annual Review of Biomedical Engineering, 2006. 8(1): p. 425-454. 92. Velegol, D., et al., Origins of concentration gradients for diffusiophoresis. Soft matter, 2016. 12(21): p. 4686-4703. 93. Dukhin, S., Non-equilibrium electric surface phenomena. Advances in Colloid and Interface Science, 1993. 44: p. 1-134. 94. Derjaguin, B., et al., Kinetic phenomena in boundary films of liquids. Kolloidn. zh, 1947. 9(01). 95. Dukhin, S.S. and B. Derjaguin, Surface and colloid science. 1974: Wiley-Interscience. 96. Prieve, D., et al., Motion of a particle generated by chemical gradients. Part 2. Electrolytes. Journal of Fluid Mechanics, 1984. 148: p. 247-269. 97. Khair, A.S. and T.M. Squires, The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Physics of fluids, 2009. 21(4): p. 042001. 98. Keh, H.J. and J.S. Jan, Boundary effects on diffusiophoresis and electrophoresis: motion of a colloidal sphere normal to a plane wall. Journal of colloid and interface science, 1996. 183(2): p. 458-475. 99. Yang, F., S. Shin, and H.A. Stone, Diffusiophoresis of a charged drop. Journal of Fluid Mechanics, 2018. 852: p. 37-59. 100. Kodama, A., et al., Migration of phospholipid vesicles can be selectively driven by concentration gradients of metal chloride solutions. Langmuir, 2017. 33(40): p. 10698-10706. 101. Somasundar, A., et al., Positive and negative chemotaxis of enzyme-coated liposome motors. Nature nanotechnology, 2019. 14(12): p. 1129-1134. 102. Hogg, T. and R.A. Freitas Jr, Chemical power for microscopic robots in capillaries. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(2): p. 298-317. 103. Patra, D., et al., Intelligent, self-powered, drug delivery systems. Nanoscale, 2013. 5(4): p. 1273-1283. 104. Paxton, W.F., A. Sen, and T.E. Mallouk, Motility of catalytic nanoparticles through self‐generated forces. Chemistry–A European Journal, 2005. 11(22): p. 6462-6470. 105. Walther, A. and A.H. Müller, Janus particles. Soft Matter, 2008. 4(4): p. 663-668. 106. Kaewsaneha, C., et al., Preparation of Janus colloidal particles via Pickering emulsion: An overview. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013. 439: p. 35-42. 107. Volpe, G., et al., Microswimmers in patterned environments. Soft Matter, 2011. 7(19): p. 8810-8815. 108. Buttinoni, I., et al., Active Brownian motion tunable by light. Journal of Physics: Condensed Matter, 2012. 24(28): p. 284129. 109. Kreuter, C., et al., Transport phenomena and dynamics of externally and self-propelled colloids in confined geometry. The European Physical Journal Special Topics, 2013. 222(11): p. 2923-2939. 110. Das, S., et al., Boundaries can steer active Janus spheres. Nature communications, 2015. 6(1): p. 1-10. 111. Simmchen, J., et al., Topographical pathways guide chemical microswimmers. Nature Communications, 2016. 7(1): p. 10598. 112. Solovev, A.A., et al., Catalytic microtubular jet engines self‐propelled by accumulated gas bubbles. Small, 2009. 5(14): p. 1688-1692. 113. Katuri, J., et al., Designing micro-and nanoswimmers for specific applications. Accounts of chemical research, 2017. 50(1): p. 2-11. 114. Lattuada, M. and T.A. Hatton, Synthesis, properties and applications of Janus nanoparticles. Nano Today, 2011. 6(3): p. 286-308. 115. Prieve, D.C., et al., Diffusiophoresis of charged colloidal particles in the limit of very high salinity. Proceedings of the National Academy of Sciences, 2019. 116(37): p. 18257-18262. 116. Alkhadra, M.A., et al., Continuous separation of radionuclides from contaminated water by shock electrodialysis. Environmental science technology, 2019. 54(1): p. 527-536. 117. Deng, D., et al., Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection. Desalination, 2015. 357: p. 77-83. 118. Ryzhkov, I., et al., Induced-charge enhancement of the diffusion potential in membranes with polarizable nanopores. Physical review letters, 2017. 119(22): p. 226001. 119. Canuto, C., et al., Spectral methods in fluid dynamics. 2012: Springer Science Business Media. 120. Hussaini, M. and T. Zang, Spectral methods in fluid dynamics. Annual Review of Fluid Mechanics, 1987. 19(1): p. 339-367. 121. Fenn, J.B., Ion formation from charged droplets: roles of geometry, energy, and time. Journal of the American Society for Mass Spectrometry, 1993. 4(7): p. 524-535. 122. Booth, F., The cataphoresis of spherical fluid droplets in electrolytes. The Journal of Chemical Physics, 1951. 19(11): p. 1331-1336. 123. Wuzhang, J., et al., Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions. Electrophoresis, 2015. 36(19): p. 2489-2497.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79668-
dc.description.abstract本研究以位於電解質溶液中的帶電介電液滴為主體,探討兩項重要的電動力學現象:電泳與擴散泳。液滴模型可模擬為真實物理系統的微乳液、奈米乳液、微脂體與胞外體等。而分別以外加電場與外加濃度場作為驅動力的電泳和擴散泳,從首次被提出以來,一直在各領域有著卓越且進步的發展。從民生工業的食品、化妝品到重工業的煉油、膜過濾、沉積,乃至於生技產業的製藥、生化、醫材等領域都有著舉足輕重的地位,是可以全方面應用的技術。 本研究採用假性光譜法中的正交配位法來做數值處理。透過空間映射、多區聯解、擾動法、子問題法等手法,搭配系統相對應的電動力學方程組和邊界條件來求解介電液滴之泳動度。探討電解質溶液和介電液滴的各項物理參數,包含電雙層厚度、介電液滴內外黏度比、表面帶電量、粒子大小等,對於泳動度的影響。 第一部分為電泳,本研究發現一有趣的現象,在不同的電雙層厚度區間,時而出現氣泡跑得較固體硬球快的情形;時而出現固體硬球跑得較氣泡快的情形。這可以歸因於液滴額外切線電驅動力與電滲流之交互作用,致使其相應而生的內外部渦流。並且可以發現一不論介電液滴內外黏度比為多少,泳動度不隨電雙層厚度改變而改變的臨界點。 第二部分為擴散泳,本研究發現擴散泳中的電泳效應和化學泳效應處於互相競爭的狀態,且兩者的數量級相當。此外,當電解質溶液陰陽離子擴散係數不相等時,可能會出現負的泳動度,在實務應用上須特別小心。 本研究對介電液滴之電泳與擴散泳現象提供了深入的分析與探討,可作為其實際應用之基礎。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:06:57Z (GMT). No. of bitstreams: 1
U0001-3108202115254000.pdf: 4802399 bytes, checksum: 5e1391e7d95375eb3e45de275fba36c0 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 I 中文摘要 III 英文摘要 V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1 研究目的與論文架構 1 1-2 液滴系統介紹 2 1-3 以液滴模型模擬之物理系統介紹 3 1-4 如何使膠體粒子表面帶電 10 1-5 介電液滴與導電液滴之性質 11 1-6 液滴的變形 13 1-7 電泳概論 14 1-8 擴散泳概論 24 第二章 數值方法 33 2-1 計算流程 33 2-2 假性光譜法(正交配位法) 34 2-3 空間映射 40 2-4 多區聯解之補綴式假性光譜法 41 2-5 牛頓-拉福森疊代法 44 2-6 擾動態多變數聯解 47 2-7 數值積分 49 第三章 結果與討論-介電液滴之電泳現象探討 51 3-1 系統描述 51 3-2 理論分析 53 3-3 表面帶電量選擇 67 3-4 程式比對 68 3-5 液滴表面附近之渦流與電泳動度之關係:與硬球比較 71 3-6 內外黏度比 (σ_H) 對電泳動度之影響 74 3-7 表面電位 (ϕr) 對電泳動度之影響 76 3-8 電雙層厚度 (κa) 對電泳動度之影響 78 3-9 結論 86 第四章 結果與討論-介電液滴之擴散泳現象探討 87 4-1 系統描述 87 4-2 理論分析 89 4-3 程式比對 103 4-4 擴散泳的化學泳效應 106 4-5 擴散泳的電泳效應 113 4-6 結論 120 第五章 總結 121 附錄 122 參考文獻 125
dc.language.isozh-TW
dc.title介電液滴之泳動行為:電泳與擴散泳zh_TW
dc.titlePhoretic Motions of a Dielectric Droplet: Electrophoresis and Diffusiophoresisen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee游佳欣(Hsin-Tsai Liu),陳賢燁(Chih-Yang Tseng),唐于博,朱智瑋
dc.subject.keyword介電液滴,泳動行為,電泳,擴散泳,電動力學現象,藥物輸送,電雙層極化效應,自旋運動,渦流,zh_TW
dc.subject.keywordDielectric Droplet,Drug Delivery,Diffusiophoresis,Electrokinetic Phenomena,Electrophoresis,Electrical Double Layer Polarization,Phoretic Motions,Spinning Motion,Vortex Flow,en
dc.relation.page134
dc.identifier.doi10.6342/NTU202102907
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-3108202115254000.pdf4.69 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved