請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79658完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李宗徽(Tzong-Huei Lee) | |
| dc.contributor.author | Ching-An Kuo | en |
| dc.contributor.author | 郭敬安 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:06:39Z | - |
| dc.date.available | 2021-09-11 | |
| dc.date.available | 2022-11-23T09:06:39Z | - |
| dc.date.copyright | 2021-09-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-03 | |
| dc.identifier.citation | Arad, S. and Levy-Ontman, O. (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Current Opinion in Biotechnology. 21(3): 358-364. Ball, S., Colleoni, C., Cenci, U., Raj, J. N. and Tirtiaux, C. (2011). The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. Journal of Experimental Botany. 62 (6): 1775–1801. Bondu, S., Cerantola, S., Kervarec, N. and Deslandes, E. (2009) Impact of the salt stress on the photosynthetic carbon flux and 13C-label distribution within floridoside and digeneaside in Solieria chordalis. Phytochemistry. 70(2): 173-184 Breitenbach, U., Kallmayer, V., Raschke, T., Scherner, C., Siefken, W. and Viala, S. (2006) Cosmeticpreparations containing glucosyl glycerides and one or moreacrylamidomethyl propylsulphonic acid polymers. WO 2006122669, Germany. Chanda, B., Venugopal, S. C., Kulshrestha, S., Navarre, D. A., Downie, B., Vaillancourt, L., Kachroo, A. and Kachroo, P. (2008) Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. Plant Physiology. 147(4): 2017-2029 Colin, H., Guéguen, E. (1930) The constitution of the principle sugar of Rhodymenia palmata. Comptes Rendus Hebdomadaires des Seances de l Academie des Sciences. 191: 163–164 Christelle, S. C., Bessières, M. A. and Deslandes, E. (2001) An alternative HPLC method for the quantification of floridoside in salt-stressed cultures of the red alga Grateloupia doryphore. Journal of Applied Phycology. 14:123-127 Cui, X. S., Chen, J. J., Yang, R., Luo, Q. J. and Chen, H. M. (2018). Progress in the study of red algal floridosides. Marina Sciences. 42(4): 162-169 Garcia, M. M. and van de Maarel, M. J. E. C. (2016) Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Express. 6(1): 71. Gao, Y. L., Li J. L., Yan X. J., Yang, R., Zhang, C. D. and Chen, H. M. (2017) Extraction of floridoside and the effect of floridoside on Ctenopharyngodon idella surimi during frozen storage. Journal of Fisheries of China. 41(2): 311-318. Gong, J. Y., Liu, Z. W. and Zou, D. H. (2020) Growth and photosynthetic characteristics of Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta) cultured under fluorescent light and different LED light. Journal of Applied Phycology. 32: 3265–3272. Imai, I. (2012) High growth rates of the red tide flagellate Chattonella marina (Raphidophyceae) observed in culture. Hokudai Suisan Ihou. 62: 71-74 Jang, I. C., Oh, S. J., Seo, J S., Choi, W. B., Song, S. I., Kim, C. H., Kim, Y. S., Seo, H. S., Choi, Y. D., Nahm, B. H. and Kim, J. K. (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 131: 516–524 Jian, Q. L., Jiang, L. G., Yan, J. Y. and Chen, H. M. (2017) Suppression of melanin formation by floridoside. Journal of Biology. 34: 39-42 Kirst, G. O. (1989) Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology Plant Molecular Biology. 40(41): 21-53 Kim, J. S., Kim, Y. H., Seo, Y. W. and Park S. H. (2007) Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnology and Bioprocess Engineering volume. 12: 308-311 Kim, M., Li, Y. X., Dewapriya, P., Ryu, B. and Kim, S. K. (2013) Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB REPORTS. 46: 398-403 Karsten, U., West, J. A., Zuccarello, G. C., Nixdorf, O., Barrow, K. D., and King, R. J. (2010) Low molecular weight carbohydrate patterns in the Bangiophyceae (Rhodophyta) Journal of Phycology. 35(5): 967-976. Karsten, U., Barrow, K. D. and King, R. J. (1993) Floridoside, L-isofloridoside, and D-isofloridoside in the Red Alga Porphyra columbina. Plant Physio. 103: 485-491 Li, S. Y., Shabtai, Y. and Arad, S. (2002) Floridoside as a carbon precursor for the synthesis of cell-wall polysaccharide in the red microalga Porphyridium sp. (Rhodophyta). Journal of Phycology. 38(5): 931-938 Li, J. L., Zhou, C. X., Jiang, Y., Yan X. Y. and Chen, H. M. (2016) The Cryoprotective effect of floridoside on microalgae. Acta Hydrobiologica Sinica. 40(5): 1020-1024 Liu, X. J., Wen, J. Y., Chen, W. Z., Du, H. (2019) Physiological effects of nitrogen deficiency and recovery on the macroalga Gracilariopsis lemaneiformis (Rhodophyta). Journal of Phycology. 55: 830–839. Lv, Y., Sun, P., Zhang, Y. Y., Xuan, W. Y., Xu, N. J. and Sun, X. (2019) Response of trehalose, its degrading enzyme, sucrose, and floridoside/isofloridoside under abiotic stresses in Gracilariopsis lemaneiformis (Rhodophyta). Journal of Applied Phycology volume. 31: 3861–3869. Macler, B. A. (1986) Regulation of Carbon Flow by Nitrogen and Light in the Red Alga, Gelidium coulteri. Plant Physiology. 82(1): 136-141 Nakashima, K., Zhou X., Kunkel, G., Zhang, Z.P., Deng, J.M., Behringer, R. R. and Crombrugghe, B. (2002) The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell. 108(1): 17-29 Pade, N., Linka, N., Wolfgang, R., Weber, Andreas P. M. and Hagemann, M. (2015) Floridoside and isofloridoside are synthesized by trehalose-6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria. New Phytologist. 205:1227-1238 Ryu, B. M., Li, Y. X., Kang, K. H., Kim, S. K. and Kim, D. G. (2015) Floridoside from Laurencia undulata promotes osteogenic differentiation in murine bone marrow mesenchymal cells. Journals and Books. 19: 505-511 Rashid, M.A., Gustafson, K.R., Cardellina, J.H., and Boyd, M.R. (1995) Brominated chamigrane sesquiterpenes produce a novel profile of differential cytotoxicity in the NCI in-vitro screen. Natural Product Letters. 6(4): 255-259 Sheath, R. G. and Cole K. M. (1984) Systematics of Bangia (Rhodophyta) in North America. I. Biogeographic trends in morphology. Phycologia. 23(3):383-396 Stein, G. S., Lian J. B., Wijnen, A. J., Stein, J. L., Montecino, M., Javed, A., Zaidi, S. K., Young, D. W., Choi, J. Y. and Pockwinse, S.M. (2004) Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene. 23(24): 4315-4329 Sun, M. X., Zhu, Z. J., Chen, J. J., Yang R., Luo, Q. J., Wu, W., Yan, X. J. and Chen, H. M. (2019) Putative trehalose biosynthesis proteins function as differential floridoside-6-phosphate synthases to participate in theabiotic stress response in the red alga Pyropia haitanensis. BMC Plant Biology. 19(1): 325 Takashi,M., Natsumi, M. and Naoki, S. (2015) Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth. Springer Plus. 4: 559 Tauzin, A. S., Giardina, T. (2014) Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant. 5: 293–300 Thiem, J., Scheel, O. and Schneider, G. (1997) Cosmetic preparations with an effective amount of glycosylglycerides as skin moisturizers. EP0770378, Germany. Vanessa, G., Zuccarello, G. C. and Karsten, U. (2001) Seasonal changes in stress metabolites of native and introduced red algae in New Zealand. Journal of Applied Phycology. 33(2): 1157-1170 Viola, R., Nyvall, P. and Pedersén, M. (2001) The unique features of starch metabolism in red algae. Proceedings of the Royal Society of London B. 268(1474): 1417–1422 Weïwer, M., Sherwood. T. and Linhardt R. J. (2008) Synthesis of floridoside. Journal of Carbohydrate Chemistry. 27: 420–427. Woelkerling, W. J. (1990) An introduction. In Cole, K, M and Sheath, R, G, eds, Biology of the Red Algae. Cambridge: Cambridge University Press, Cambridge, UK, pp 1 - 6 Yanshin, N., Kushnareva, A., Lemesheva, V., Birkemeyer, C. and Tarakhovskaya, E. (2021) Chemical Composition and Potential Practical Application of 15 Red Algal Species from the White Sea Coast (the Arctic Ocean). Molecules 26(9): 2489 Yang X. Q. , Yuan, Y., Zhao, Y. Q., LI, L. H., Wu, Y. Y., Wei, Y. and Cen J. W. (2018) Progress on green cryoprotectants for frozen surimi[J]. Journal of Shanghai Ocean University. 27(5): 789-796 Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. F., Bhattacharya. (2006) Defining the major lineages of red algae (Rhodophyta) Journal of Phycology. 42: 482. Yoshida, K., Takenaka, A., Nitta, T. and Iki, M. (2007) a-D-Glucopyranosyl glycerol derivatives as antiallergic agents, health foods, and cosmetics. JP 2007137862, Japan Zhao, J., Yang, Y., Zhao, Q., Chen, J., Yang, R., Chen, H. (2019) Different variations of floridoside and isofloridoside in Pyropia haitanensis under heat resistance. Journal of Nuclear Agricultural Sciences. 33: 0103–0111 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79658 | - |
| dc.description.abstract | 佛羅里多苷 (floridoside) 是紅藻中的代謝產物之一,在結構上,是紅藻中主要的小分子糖苷,是短期的儲備碳庫並用於有機碳的轉運,將從光合作用得到的無機碳轉化為多醣和其他物質,並在調控紅藻中的滲透壓扮演著重要角色。該化合物在細胞中的合成和代謝受到各種生理狀況的調節,其含量也因環境條件和紅藻種類而異。本研究以大型紅藻粉枝藻 (Liagora sp.01) 的絲狀體 (filament) 作為研究材料,觀察粉枝藻在不同的溫度、鹽度和光質等生長條件下所產生佛羅里多苷的含量變化。在光質實驗中,在藍光照射下培養14天所產生的佛羅里多苷最多 (38.31 mg/g),是對照組的1.3倍;在鹽度實驗中,高鹽組 (鹽度45‰) 培養7天所產生的佛羅里多苷最多 (69.82 mg/g),是對照組 (36‰) 的1.95倍;在溫度實驗中,高溫 (32 °C) 培養3天所產生的佛羅里多苷達到51.6 mg/g,是對照組 (25 °C) 的3.25倍;高溫高鹽 (32 °C、鹽度45‰) 培養2天所產生的佛羅里多苷達到59.41 mg/g,是對照組 (25 °C) 的4.55倍。綜合以上結果,粉枝藻在高溫、高鹽和藍光的培養條件下會生產較多的佛羅里多苷以達到保護和滲透壓調節的作用。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:06:39Z (GMT). No. of bitstreams: 1 U0001-0209202108543000.pdf: 2534200 bytes, checksum: b877ead3cfe5a7b2bdaf179a3e0e44b4 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 誌謝……………………………………………………………………………………....i 中文摘要………………………………………………………………………………...ii 英文摘要………………………………………………………………………………..iii 目錄……………………………………………………………………………………..iv 表目錄…………………………………………………………………….…………….vi 圖目錄………………………………………………………………………………….vii 壹、 前言…………………………………………………………………...……………1 1-1紅藻的介紹…………………………………………………………………….1 1-1-1紅藻……………………………………………………………...………1 1-1-2粉枝藻屬………………………………………………...………………1 1-1-3絲狀體……………………………………………………...….…………2 1-2紅藻中所含的佛羅里多苷………………………………………...….….……2 1-3佛羅里多苷在藻體內的生理作用…………………………………....….……3 1-4佛羅里多苷的的合成與代謝……………………………………….…....……4 1-5佛羅里多苷的功能開發…………………………………………….….….......4 1-5-1保濕……………………………………………………………………...4 1-5-2抗凍………………………………………………………………….…..5 1-5-3抗氧化,抑制發炎……………………………………………….……..6 1-5-4促進成骨分化………………………………………………….………..7 1-6佛羅里多苷的生產………………………………………………….…………8 1-7研究目的………………………………………………………….……………9 貳、 材料與方法………………………………………………………………….........10 2-1藥品與儀器…………………………………………………………………...10 2-1-1藥品…………………………………………..………………………...10 2-1-2儀器…………………………………………………………………….10 2-2粉枝藻的來源與培養………………………………………………………...11 2-3從紅藻中萃取佛羅里多苷的方法…………………………………………...11 2-4佛羅里多苷的分離純化方法………………………………………………...12 2-5十四株大型藻絲狀體的佛羅里多苷含量分析……………………………...12 2-6光質實驗……………………………………………………………………...12 2-7溫度實驗……………………………………………………………………...12 2-8鹽度實驗……………………………………………………………………...13 2-9佛羅里多苷樣品之檢量線製作與各實驗的測量方法……………………...13 2-10統計方法…………………………………………………………………….14 參、 結果與討論……………………………………………………………………….15 3-1化合物1的NMR圖譜………………………………………………………15 3-2佛羅多苷之檢量線…………………………………………………………...15 3-3十四株大型藻絲狀體的佛羅里多苷含量比較……………………………...15 3-4不同光質條件下,Liagora sp. 01中佛羅里多苷含量之分析……………...16 3-5不同溫度條件下,Liagora sp. 01中佛羅里多苷含量之分析………….…...17 3-6不同鹽度條件下,Liagora sp. 01中佛羅里多苷含量之分析……………...19 肆、 總結……………………………………………………………………………….20 伍、 參考文獻………………………………………………………………………….21 陸、 附表……………………………………………………………………………….26 柒、 附圖……………………………………………………………………………….29 表目錄 1. SWMⅢ培養液配方………………...………………………………...……………26 2. 管柱層析併管整理表………………..…………………………………………….27 3. KCA-1-20-4-1與文獻中佛羅里多苷的碳譜化學位移比較……..………………28 圖目錄 1. 佛羅里多苷和異佛羅里多苷結構圖………………………………...……………29 2. 本研究所使用之所有藻株的繼代和培養……………………………...…………30 3. Liagora sp. 01藻株之放大培養…………………………………………...………31 4. Liagora sp. 01水層萃取物之管柱層析……………………………………...……32 5. Liagora sp. 01水層萃取物經管柱層析後,各分液以薄層層析分析圖…….…..33 6. Liagora sp. 01水層萃取物經Sephadex LH-20分離所得分液之HPLC層析…..34 7. 本研究所使用之14藻株的佛羅里多苷含量分析實驗………………….….....…35 8. Liagora sp. 01藻株之光質實驗………………………….…………………....…..36 9. 化合物1的氫譜和碳譜………………………………………………….…....…...37 10. 佛羅里多苷之檢量線………………………………………………………..…….38 11. 本研究中所培養14藻株的佛羅里多苷含量比較圖………………..…..…..…...39 12. 不同光質條件下,Liagora sp. 01中佛羅里多苷含量之分析結果…..……..…...40 13. 不同光質條件下,Liagora sp. 01中佛羅里多苷含量之分析結果 (不加培養液)……………………………………………………………………….………….41 14. 不同溫度條件下,Liagora sp. 01中佛羅里多苷含量之變化結果………………42 15. 不同鹽度條件下,Liagora sp. 01中佛羅里多苷含量之變化結果….….…………43 | |
| dc.language.iso | zh-TW | |
| dc.title | 粉枝藻在各種培養條件下所產生的佛羅里多苷的含量變化 | zh_TW |
| dc.title | Responses of floridoside under various culturing parameters in Liagora sp. | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-3477-0877 | |
| dc.contributor.oralexamcommittee | 鄭俊明(Hsin-Tsai Liu),張睿昇(Chih-Yang Tseng) | |
| dc.subject.keyword | 粉枝藻,佛羅里多苷,溫度,鹽度,光質, | zh_TW |
| dc.subject.keyword | Liagora,floridoside,temperature,salinity,light quality, | en |
| dc.relation.page | 43 | |
| dc.identifier.doi | 10.6342/NTU202102945 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0209202108543000.pdf | 2.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
