請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79656完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉俊麟(Chun-Lin Liu) | |
| dc.contributor.author | Tzu-Shun Lin | en |
| dc.contributor.author | 林慈舜 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:06:35Z | - |
| dc.date.available | 2022-11-01 | |
| dc.date.available | 2022-11-23T09:06:35Z | - |
| dc.date.copyright | 2021-11-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-12 | |
| dc.identifier.citation | M. Abdelaziz, L. Anttila, A. Brihuega, F. Tufvesson, and M. Valkama. Digital predistortion for hybrid MIMO transmitters. IEEE J. Sel. Topics Signal Processing., 12(3):445–454, Jun. 2018. M. Abdelaziz, L. Anttila, A. Kiayani, and M. Valkama. Decorrelation-based concurrent digital predistortion with a single feedback path. IEEE Transactions on Microwave Theory and Techniques, 66(1):280–293, Jan. 2018. H. AlKanan and F. Li. A simplified accuracy enhancement to the Saleh AM/AM modeling and linearization of solid-state RF power amplifiers. Electronics, 9(11):1806, Jun. 2020. Z. Alina and O. Amrani. On digital post-distortion techniques. IEEE Transactions on Signal Processing, 64(3):603–614, Feb. 2016. A. R. Belabad, S. Sharifian, and S. A. Motamedi. An accurate digital baseband predistorter design for linearization of RF power amplifiers by a genetic algorithm based Hammerstein structure. Analog Integrated Circuits and Signal Processing, 95(2):231–247, Jan. 2018. S. Benedetto and E. Biglieri. Principles of digital transmission: with wireless applications. Springer Science Business Media, 1999. R. N. Braithwaite. A comparison of indirect learning and closed loop estimators used in digital predistortion of power amplifiers. In 2015 IEEE MTTS International Microwave Symposium, pages 1–4, May. 2015. A. Brihuega, L. Anttila, M. Abdelaziz, T. Eriksson, F. Tufvesson, and M. Valkama. Digital predistortion for multiuser hybrid MIMO at mmWaves. IEEE Transactions on Signal Processing, 68:3603–3618, Mar. 2020. S. C. Cripps. Advanced techniques in RF power amplifier design. Artech House, 2002. B. FarhangBoroujeny. Adaptive filters: theory and applications. John Wiley Sons, 2013. F. M. Ghannouchi and O. Hammi. Behavioral modeling and predistortion. IEEE Microwave Magazine, 10(7):52–64, Dec. 2009. S. Haykin. Digital Communication Systems. John Wiley Sons, Inc., 2014. A. Katz, J. Wood, and D. Chokola. The evolution of PA linearization: From classic feedforward and feedback through analog and digital predistortion. IEEE Microwave Magazine, 17(2):32–40, Feb. 2016. K. Kibaroglu, M. Sayginer, and G. M. Rebeiz. A quadcore 28–32 GHz transmit/receive 5G phased-array IC with flip-chip packaging in SiGe BiCMOS. In 2017 IEEE MTTS International Microwave Symposium (IMS), pages 1892–1894, Jun.2017. S. Lee, M. Kim, Y. Sirl, E. Jeong, S. Hong, S. Kim, and Y. H. Lee. Digital predistortion for power amplifiers in hybrid MIMO systems with antenna subarrays. In 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pages 1–5, May. 2015. Lei Ding, G. T. Zhou, D. R. Morgan, Zhengxiang Ma, J. S. Kenney, Jaehyeong Kim, and C. R. Giardina. A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1):159–165, Jan. 2004. H. Leung and Z. Zhu. Signal Processing for RF Impairment Mitigation in Wireless Communications. Artech, 2014. X. Liu, Q. Zhang, W. Chen, H. Feng, L. Chen, F. M. Ghannouchi, and Z. Feng. Beamoriented digital predistortion for 5g massive MIMO hybrid beamforming transmitters. IEEE Transactions on Microwave Theory and Techniques, 66(7):3419–3432, Jul. 2018. C. Mollen, E. G. Larsson, U. Gustavsson, T. Eriksson, and R. W. Heath. Out-of-band radiation from large antenna arrays. IEEE Communications Magazine, 56(4):196–203, Apr. 2018. D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan. A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Transactions on Signal Processing, 54(10):3852–3860, Oct. 2006. M. O’Droma, S. Meza, and Y. Lei. New modified Saleh models for memoryless nonlinear power amplifier behavioural modelling. IEEE Communications Letters, 13(6):399–401, Jun. 2009. R. Pasricha and S. Kumar. Power amplifier-memory-less non linear modeling. International Journal of Physical Sciences, 6(11):2644–2648, Apr. 2011. R. Raich, Hua Qian, and G. T. Zhou. Orthogonal polynomials for power amplifier modeling and predistorter design. IEEE Transactions on Vehicular Technology, 53(5):1468–1479, Sep. 2004. R. Raich and G. T. Zhou. On the modeling of memory nonlinear effects of power amplifiers for communication applications. In Proceedings of 2002 IEEE 10th Digital Signal Processing Workshop, 2002 and the 2nd Signal Processing Education Workshop., pages 7–10, Oct. 2002. R. Raich and G. T. Zhou. Orthogonal polynomials for complex Gaussian processes. IEEE Transactions on Signal Processing, 52(10):2788–2797, Oct. 2004. A. A. M. Saleh. Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Transactions on Communications, 29(11):1715–1720, Nov. 1981. A. Yadav, D. Mazumdar, B. Karthikeyan, and G. R. Kadambi. Linearization of Saleh, Ghorbani and Rapp amplifiers with Doherty technique. SASTech Journal, 9:79–86, Sep. 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79656 | - |
| dc.description.abstract | 大規模天線系統預計能提高未來無線通信系統的能源效率,而發射器中最耗电的元件是功率放大器,它可以將訊號功率增强到所需要的水平,因此功率放大器的功率效率需要很高。為了提高小型低成本功率放大器的能量效率,需要將功率放大器驅動到靠近飽和的區域,但由於功率放大器的飽和特性會導致傳輸訊號產生非線性失真,此失真的訊號不僅會降低傳輸訊號的質量還會干擾到相鄰通道的傳輸,因此如何在保持良好功率效率的同時有效地降低功率放大器的非線性失真在近年來是一個備受關注的研究問題。 本篇論文的貢獻主要分成兩個部分,第一個部分我們透過新穎的分析方法為Saleh模型的功率放大器設計相對應的數位預失真器,眾所皆知Saleh模型對於建模高度非線性的功率放大器有較高的準確度,例如行波管放大器。雖然在過往的文獻中已經有方法針對在單一天線的情況下建構數位預失真器,但一般而言混合波束成形大規模天線發射機在天線子陣列中包含多根天線,因此本篇論文將我們的分析方法擴展到多天線的應用,並提出了一種新的數位預失真處理技術。數值模擬的部分說明了整體數位預失真系統的線性化性能得到改善。 本篇論文的第二部分我們考慮了由記憶多項式模型建模的的功率放大器,該模型常用於對固態功率放大器進行建模。在過往的文獻中已經存在對多天線的預失真處理和學習技術,該方法透過組合每個功率放大器的輸出訊號,從而使預期接收器方向上的訊號非線性失真最小化,但應用於更新數位預失真器的多項式係數是眾所皆知的block-LMS參數學習方案,該方案在參數的選擇上不夠穩健。本篇論文提出了一種新的數位預失真參數學習方案,當參數的選擇偏離最佳參數時,整體預失真系統的線性化性能並不會下降太快。數值模擬的結果也說明我們的參數學習解決方案可以補償由記憶功率放大器引起的非線性失真。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:06:35Z (GMT). No. of bitstreams: 1 U0001-0209202113530700.pdf: 8062800 bytes, checksum: 3d33b1a08406d836a5712df126ac5cb0 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xix Chapter 1 Introduction 1 1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Digital Predistortion Technique and Modeling of Power Amplifiers 5 2.1 Nonlinear Behaviors in Power Amplifiers . . . . . . . . . . . . . . . 6 2.1.1 Impact of Power Amplifiers nonlinearity . . . . . . . . . . . . . . . 9 2.2 Behavioral Models of Memoryless Power Amplifiers . . . . . . . . . 10 2.2.1 Saleh Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Rapp Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Ghorbani Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.4 Memoryless Polynomial Model . . . . . . . . . . . . . . . . . . . . 13 2.2.5 Orthogonal Polynomial Model . . . . . . . . . . . . . . . . . . . . 14 2.3 Behavioral Models of Memory Power Amplifiers . . . . . . . . . . . 14 2.3.1 Volterra Series Model . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Wiener Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Hammerstein Model . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.4 Memory Polynomial Model . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Compensation Techniques for Power Amplifiers Distortion . . . . . . 18 2.4.1 Digital Predistortion Technique . . . . . . . . . . . . . . . . . . . . 19 2.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.1 Normalized Mean Square Error . . . . . . . . . . . . . . . . . . . . 22 2.5.2 Adjacent Channel Leakage Ratio . . . . . . . . . . . . . . . . . . . 22 Chapter 3 Digital Predistortion for Saleh Model Power Amplifiers 25 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Real DPD Design for a Single Antenna . . . . . . . . . . . . . . . . 27 3.2.1 Saleh Model Identification . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 Derivation of Real DPD for a Single Antenna . . . . . . . . . . . . 29 3.3 Real DPD Design for Multiple Antennas . . . . . . . . . . . . . . . 37 3.3.1 Analysis of PA Induced Nonlinear Distortion . . . . . . . . . . . . 38 3.3.2 Sum of Errors Real DPD . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.3 Combined Feedback Real DPD . . . . . . . . . . . . . . . . . . . . 44 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.1 The Performance Analysis on Real DPD for a Single Antenna . . . 49 3.4.2 Comparison of Performance on SERD and CFRD for Multiple Antennas. . . . . 51 3.4.3 The Impact of Imperfect Parameter Estimation on CFRD Approach . 59 3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Chapter 4 Digital Predistortion for Memory Polynomial Model Power Amplifiers 63 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Nonlinear Distortion in the Intended Receiver Direction . . . . . . . 65 4.2.1 Memory Polynomial Model Identification . . . . . . . . . . . . . . 65 4.2.2 Observation of PA Induced Nonlinear Distortion . . . . . . . . . . . 67 4.3 DPD Processing and Proposed Parameter Learning Solution . . . . . 69 4.3.1 DPD Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.2 Combined Feedback Based Proposed DPD Learning . . . . . . . . 72 4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Evaluation Environment and Simulation Assumptions . . . . . . . . 77 4.4.2 Estimation of Convergence Rate of DPD Empirical Learning Curve 79 4.4.3 Comparison between [1], [8] and the Proposed DPD Parameter Learning Solution . . . . . 81 4.4.4 Comparison of Performance on BLMS Solution and Proposed Solution for Memoryless Polynomial Model PAs . . 87 4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Chapter 5 Conclusion and Future Work 91 References 93" | |
| dc.language.iso | zh-TW | |
| dc.title | 基於最佳化分析的射頻功率放大器單一數位預失真技術 | zh_TW |
| dc.title | Optimization-Based Single Digital Predistortion Technique for RF Power Amplifiers | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇柏青(Hsin-Tsai Liu),馮世邁(Chih-Yang Tseng) | |
| dc.subject.keyword | 數位預失真,功率放大器,非線性失真,大型陣列發射機,Saleh模型,記憶多項式模型, | zh_TW |
| dc.subject.keyword | Digital Predistortion,power amplifiers,nonlinear distortions,large-array transmitters,Saleh model,memory polynomial model, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU202102951 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0209202113530700.pdf | 7.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
