請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79654完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武(Shiu-Wu Chau) | |
| dc.contributor.author | Yu-Cheng Hsu | en |
| dc.contributor.author | 許育誠 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:06:31Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-23T09:06:31Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-08 | |
| dc.identifier.citation | [1] P. Vermeulen. A Wind Tunnel Study of the Wake of a Horizontal Axis Wind Turbine: Report. 1978. [2] P. Hashemi-Tari, K. Siddiqui, M. Refan, and H. Hangan. “Wind Tunnel Investigation of the Near-Wake Flow Dynamics of a Horizontal Axis Wind Turbine”. In: Journal of Physics: Conference Series 524 (2014). [3] U. Ho¨gstro¨ m, D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman. “A Field Study of the Wake behind a 2 MW Wind Turbine”. In: Atmospheric Environment 22.4 (1988), pp. 803–820. [4] M. Bastankhah and F. Porte´-Agel. “A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics”. In: Energies 10.7 (2017), p. 923. [5] Y. T. Wu, C. Y. Lin, C. E. Huang, and S. D. Lyu. “Investigation of Multiblade Wind-Turbine Wakes in Turbulent Boundary Layer”. In: Journal of Energy Engineering 145.6 (2019). [6] L. J. Vermeer, J. N. Sørensen, and A. Crespo. “Wind Turbine Wake Aerodynamics”. In: Progress in aerospace sciences 39.6-7 (2003), pp. 467–510. [7] W. J. M. Rankine. “On the Mechanical Principles of the Action of Propellers”. In: Transactions of the Institution of Naval Architects 6 (1865). [8] R. E. Froude. “On the Part Played in Propulsion by Differences of Fluid Pressure”. In: Trans. Inst. Naval Architects 30 (1889), p. 390. [9] A. Betz. “Das Maximum Der Theoretisch Mo¨ glichen Ausnutzung Des Windes Durch Windmotoren”. In: Zeitschrift fur das gesamte Turbinen-westen 20 (1920). [10] H. Glauert. “Airplane Propellers”. In: Aerodynamic Theory. 1935, pp. 169–360. [11] J. G. Leishman. “Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines”. In: Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology 5.2-3 (2002), pp. 85–132. [12] N. O. Jensen. A Note on Wind Generator Interaction. Risø National Laboratory, 1983. [13] M. H. Lee. “Numerical Simulation of the Aerodynamic Performance of Horizontal-Axis Wind Turbine(HAWT) Blades”. MA thesis. National Cheng Kung University, 2014. [14] J. M. Jiang. “Numerical Study on Aerodynamic Loading of Horizontal-Axis Wind Turbine via a Fluid-Structure Interaction Approach”. MA thesis. National Taiwan University of Science and Technology, 2012. [15] J. R. Huang. “The Analysis of the Operating Data of Wind Turbines in Penghu and Simulation”. MA thesis. National Tsing Hua University, 2006. [16] N. Z. Lee. “Aerodynamic and Aeroacoustic Prediction of a Horizontal-Axis Wind Turbine”. MA thesis. National Tsing Hua University, 2015. [17] K. C. Lee, B. Nelson, T. Y. Lin, and S. W. Chau. “Wake Modeling of Wind Turbines in an Offshore Wind Farm”. In: Taiwan Wind Energy Association with Ministry of Economic Affairs and Science and Technology Conference. 2017. [18] K. C. Lee. “A Wake Model for Wind Turbine Power Prediction”. MA thesis. National Taiwan University, 2018. [19] Y. C. Chiang. “Wind Farm Power Prediction via Actuator Disk Model”. MA thesis. National Taiwan University, 2019. [20] Y. C. Chiang, Y. C. Hsu, and S. W. Chau. “Power Prediction of Wind Farms via a Simplified Actuator Disk Model”. In: Journal of Marine Science and Engineering 8.8 (2020), p. 610. [21] U. Piomelli. Large-Eddy and Direct Simulation of Turbulent Flows. 1997. [22] D. Mehta, A. H. Van Zuijlen, B. Koren, J. G. Holierhoek, and H. Bijl. “Large Eddy Simulation of Wind Farm Aerodynamics: A Review”. In: Journal of Wind Engineering and Industrial Aerodynamics 133 (2014), pp. 1–17. [23] U. Piomelli and E. Balaras. “Wall-Layer Models for Large-Eddy Simulations”. In: Annual review of fluid mechanics 34.1 (2002), pp. 349–374. [24] X. Huanga, S. A. Moghadama, P. S. Meysonnata, M. Meinkea, and W. Schro¨dera. “Numerical Analysis of the Effect of Flaps on the Tip Vortex of a Wind Turbine Blade”. In: International Journal of Heat and Fluid Flow (2019). [25] K. Horiuti. “A Proper Velocity Scale for Modeling Subgrid-scale Eddy Viscosities in Large Eddy Simulation”. In: Physics of Fluids A: Fluid Dynamics 5.1 (1993), pp. 146–157. [26] J. Meyers and C. Meneveau. “Large Eddy Simulations of Large Wind-Turbine Arrays in the Atmospheric Boundary Layer”. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010, p. 827. [27] G. W. Qian and T. Ishihara. “Numerical Study of Wind Turbine Wakes over Escarpments by a Modified Delayed Detached Eddy Simulation”. In: Journal of Wind Engineering and Industrial Aerodynamics 191 (2019), pp. 41–53. [28] D. Carati, S. Ghosal, and P. Moin. “On the Representation of Backscatter in Dynamic Localization Models”. In: Physics of Fluids 7.3 (1995), pp. 606– 616. [29] M. Germano. “Turbulence: The Filtering Approach”. In: Journal of Fluid Mechanics 238 (1992), pp. 325–336. [30] H. Sarlak, C. Meneveau, and J. N. Sørensen. “Role of Subgrid-Scale Modeling in Large Eddy Simulation of Wind Turbine Wake Interactions”. In: Renewable Energy 77 (2015), pp. 386–399. [31] F. Porte´-Agel, C. Meneveau, and M. B. Parlange. “A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer”. In: Journal of Fluid Mechanics 415 (2000), pp. 261–284. [32] R. Stoll and F. Porte´-Agel. “Dynamic Subgrid-Scale Models for Momentum and Scalar Fluxes in Large-Eddy Simulations of Neutrally Stratified Atmospheric Boundary Layers over Heterogeneous Terrain”. In: Water Resources Research 42.1 (2006). [33] A. S. Dar, J. Berg, N. Troldborg, and E. G. Patton. “On the Self-Similarity of Wind Turbine Wakes in a Complex Terrain Using Large Eddy Simulation”. In: Wind Energy Science 4.4 (2019), pp. 633–644. [34] Y. T. Wu and F. Porte´-Agel. “Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations”. In: Boundary-layer meteorology 138.3 (2011), pp. 345–366. [35] Y. T. Wu and F. Porte´-Agel. “Modeling Turbine Wakes and Power Losses within a Wind Farm Using LES: An Application to the Horns Rev Offshore Wind Farm”. In: Renewable Energy 75 (2015), pp. 945–955. [36] Y. T. Wu and F. Porte´-Agel. “Simulation of Turbulent Flow inside and above Wind Farms: Model Validation and Layout Effects”. In: Boundary-layer meteorology 146.2 (2013), pp. 181–205. [37] R. J. Stevens, L. A. Mart´ınez-Tossas, and C. Meneveau. “Comparison of Wind Farm Large Eddy Simulations Using Actuator Disk and Actuator Line Models with Wind Tunnel Experiments”. In: Renewable energy 116 (2018), pp. 470–478. [38] Pankaj K. Jha, M. J. Churchfield, P. J. Moriarty, and S. Schmitz. “Guidelines for Volume Force Distributions within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids”. In: Journal of Solar Energy Engineering 136.3 (2014). [39] M. Draper, A. Guggeri, and G. Usera. “Validation of the Actuator Line Model with Coarse Resolution in Atmospheric Sheared and Turbulent Inflow”. In: Journal of Physics: Conference Series. 8. 2016. [40] M. Draper, A. Guggeri, and G. Usera. “Modelling One Row of Horns Rev Wind Farm with the Actuator Line Model with Coarse Resolution”. In: Journal of Physics: Conference Series. 2016. [41] G. R. Tabor and M. H. Baba-Ahmadi. “Inlet Conditions for Large Eddy Simulation: A Review”. In: Computers Fluids 39.4 (2010), pp. 553–567. [42] J. Mann. “Atmospheric Turbulence”. In: DTU Wind Energy (2012). [43] R. J. Stevens, J. Graham, and C. Meneveau. “A Concurrent Precursor Inflow Method for Large Eddy Simulations and Applications to Finite Length Wind Farms”. In: Renewable energy 68 (2014), pp. 46–50. [44] R. H. Thuillier and U. O. Lappe. “Wind and Temperature Profile Characteristics from Observations on a 1400 Ft Tower”. In: Journal of applied meteorology 3.3 (1964), pp. 299–306. [45] J. Garratt. “Review: The Atmospheric Boundary Layer”. In: Earth-Science Reviews 37.1-2 (1994), pp. 89–134. [46] B. Witha, G. Steinfeld, M. Do¨renka¨mper, and D. Heinemann. “Large-Eddy Simulation of Multiple Wakes in Offshore Wind Farms”. In: Journal of Physics: Conference Series. 2014. [47] W. Zhang, C. D. Markfort, and F. Porte´-Agel. “Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study”. In: Boundary-layer meteorology 146.2 (2013), pp. 161–179. [48] A. Chaudhari, O. Agafonova, A. Hellsten, and J. Sorvari. “Numerical Study of the Impact of Atmospheric Stratification on a Wind-Turbine Performance”. In: Journal of Physics: Conference Series. 2017. [49] M. Abkar, A. Sharifi, and F. Porte´-Agel. “Wake Flow in a Wind Farm during a Diurnal Cycle”. In: Journal of Turbulence 17.4 (2016), pp. 420–441. [50] D. Allaerts and J. Meyers. “Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions”. In: Boundary-layer meteorology 166.2 (2018), pp. 269–299. [51] M. P. Van der Laan, K. S. Hansen, N. N. Sørensen, and P. E. Re´thore´. “Predicting Wind Farm Wake Interaction with RANS: An Investigation of the Coriolis Force”. In: Journal of Physics: Conference Series. 2015. [52] P. van der Laan and N. N. Sørensen. “Why the Coriolis Force Turns a Wind Farm Wake Clockwise in the Northern Hemisphere”. In: Wind Energy Science 2 (2017), pp. 285–294. [53] S. N. Gadde and R. J. Stevens. “Effect of Coriolis Force on a Wind Farm Wake”. In: Journal of Physics: Conference Series. 2019. [54] J. Smagorinsky. “General Circulation Experiments with the Primitive Equations: I. The Basic Experiment”. In: Monthly weather review 91.3 (1963), pp. 99–164. [55] B. J. Jonkman. Turbsim User’s Guide: Version 1.50. Tech. rep. NREL/TP-500-46198. National Renewable Energy Laboratory, 2009. [56] E. Cheynet, J. B. Jakobsen, and C. Obhrai. “Spectral Characteristics of Surface-Layer Turbulence in the North Sea”. In: Energy Procedia. 14th Deep Sea Offshore Wind R D Conference, EERA DeepWind 137 (2017), pp. 414–427. [57] G. Deskos, M. Piggott, and S. Laizet. Development and Validation of the Higher-Order Finite-Difference Wind Farm Simulator, WInc3D. 2018. [58] C. H. Moeng. “A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence”. In: Journal of Atmospheric Sciences 41.13 (1984). [59] E. R. Van Driest. “On Turbulent Flow near a Wall”. In: Journal of the Aeronautical Sciences 23.11 (1956). [60] U. Piomelli. “High Reynolds Number Calculations Using the Dynamic Subgrid-scale Stress Model”. In: Physics of Fluids A: Fluid Dynamics 5.6 (1993). [61] P. J. Mason and D. J. Thomson. “Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers”. In: Journal of Fluid Mechanics 242 (1992), pp. 51–78. [62] J. H. Ferziger and M. Peric´. Computational Methods for Fluid Dynamics. 2002. [63] M. S. Darwish and F. H. Moukalled. “Normalized Variable and Space Formulation Methodology for High-Resolution Schemes”. In: Numerical Heat Transfer, Part B: Fundamentals 26.1 (1994), pp. 79–96. [64] Y. T. Wu and F. Porte´-Agel. “Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study”. In: Energies 5.12 (2012). [65] Sina Shamsoddin and F. Porte´-Agel. “A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer”. In: Energies 9.5 (2016), p. 366. [66] M. Tabib, A. Rasheed, and T. Kvamsdal. “LES and RANS Simulation of Onshore Bessaker Wind Farm: Analysing Terrain and Wake Effects on Wind Farm Performance”. In: Journal of Physics: Conference Series. 2015. [67] S. Xie and C. L. Archer. “A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions”. In: Boundary-Layer Meteorology 165.1 (2017), pp. 87–112. [68] S. Oka and T. Ishihara. “Numerical Study of Aerodynamic Characteristics of a Square Prism in a Uniform Flow”. In: Journal of Wind Engineering and Industrial Aerodynamics 97.11 (2009), pp. 548–559. [69] R. Vasaturo, I. Kalkman, B. Blocken, and P. J. V. van Wesemael. “Large Eddy Simulation of the Neutral Atmospheric Boundary Layer: Performance Evaluation of Three Inflow Methods for Terrains with Different Roughness”. In: Journal of Wind Engineering and Industrial Aerodynamics 173 (2018), pp. 241–261. [70] W. Munters, C. Meneveau, and J. Meyers. “Turbulent Inflow Precursor Method with Time-Varying Direction for Large-Eddy Simulations and Applications to Wind Farms”. In: Boundary-Layer Meteorology 159.2 (2016), pp. 305–328. [71] F. T. Nieuwstadt, J. Westerweel, and B. J. Boersma. Turbulence: Introduction to Theory and Applications of Turbulent Flows. 2016. [72] W. K. George. Lectures in Turbulence for the 21st Century. 2013. [73] S. Nishizawa, H. Yashiro, Y. Sato, Y. Miyamoto, and H. Tomita. “Influence of Grid Aspect Ratio on Planetary Boundary Layer Turbulence in Large- Eddy Simulations”. In: Geoscientific Model Development Discussions 8 (2015), pp. 3393–3419. [74] L. F. Richardson. “IX. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam”. In: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 210.459-470 (1911), pp. 307–357. [75] A. A. Adedoyin, D. K. Walters, and S. Bhushan. “Investigation of Turbulence Model and Numerical Scheme Combinations for Practical Finite-Volume Large Eddy Simulations”. In: Engineering Applications of Computational Fluid Mechanics 9.1 (2015), pp. 324–342. [76] W. Jon. “Updating the Davenport Roughness Classification”. In: Journal of Wind Engineering and Industrial Aerodynamics 41.1-3 (1992), pp. 357–368. [77] R. J. Barthelmie, K. Hansen, S. T. Frandsen, O. Rathmann, J. G. Schep- ers, W. Schlez, J. Phillips, K. Rados, A. Zervos, E. S. Politis, and P. K. Chaviaropoulos. “Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore”. In: Wind Energy 12.5 (2009), pp. 431–444. [78] Y. C. Chiang, Y. C. Hsu, and S. W. Chau. “Power Prediction of Wind Farms via a Simplified Actuator Disk Model”. In: Journal of Marine Science and Engineering 8.8 (2020), p. 610. [79] B. Michael, M. Mahmood, and B. Henrik. Qualification of Innovative Floating Substructures for 10MW Wind Turbines and Water Depths Greater than 50m: D1.2 Wind Turbine Models for the Design. Tech. rep., p. 41. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79654 | - |
| dc.description.abstract | 本研究使用大渦流法模擬風場跡流,以標準Smagorinsky模型搭配Mason阻尼函數計算次網格尺度剪力。本研究以有限體積法離散統御方程式,並以SIMPLE演算法分離速度及壓力的耦合。本研究使用超正切函數為擬合函數的限界中央差分法近似對流項以及致動盤模型考慮風機葉片對流場的作用力。本研究以自行編寫的WIFA3D-LES程式實踐上述大渦流法的數值模擬架構。本研究經由詳盡的參數研究獲得以下成果:根據三組Smagorinsky常數案例結果,建議Smagorinsky常數為0.032;時間平均流場結果對於庫朗數0.04至0.14間的時間步進不敏感;環境紊流強度與地表粗糙度呈現正向關係;與立方體網格相較,使用長方體網格的數值解具有較快的收斂速度。在單風機模擬上,本研究的風機跡流速度分佈與參考文獻相比相當符合,但在紊流強度的差異較大。以本研究方法預測Horns Rev離岸風場三個風向風速8m/s條件下的功率,功率低估誤差為3%~20%。本研究所採用的數值模型低估塔柱高度以上紊流強度。由於使用限界中央差分法,使得風機前方的紊流強度受到人為干擾造成衰減。在對於兩型功率不同風機的紊流生成的分析中,無因次化的轉子面上紊流生成總量,正比於功率係數的3/2次方與葉尖速比的1/3次方。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:06:31Z (GMT). No. of bitstreams: 1 U0001-0209202119034300.pdf: 66776578 bytes, checksum: aec051d87a26476c19a23dd41e033d4d (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Abstract iii Nomenclature vii List of Figures xiii List of Tables xvii 1 Introduction 1 2 Literature Review 3 2.1 Overview 3 2.2 Large Eddy Simulation 6 2.2.1 Blade Modeling 8 2.2.2 Simulation Conditions 9 3 Numerical Method 11 3.1 Governing Equation 11 3.2 Boundary Conditions 12 3.2.1 Synthetic Inflow 12 3.2.2 Wall Stress Modeling 15 3.3 Discretization Approach 16 3.3.1 Finite Volume Method 16 3.3.2 Convection Term Approximation 20 3.4 Actuator Disk Model 24 3.5 Numerical Framework 27 4 Parametric Study 31 4.1 General Description 31 4.2 Simulation Time 35 4.3 Smagorinsky Constant 39 4.4 Computational Domain 49 4.5 Time Step Size 51 4.6 Grid Dependence 58 4.7 Convection Approximation 66 4.8 Verification 82 5 Validation 87 5.1 Case Description 87 5.2 Reference Wind Speed 90 5.3 Power Prediction 92 5.4 Further Discussion 97 6 Turbulence Generation by Rotor 101 6.1 Case Description 102 6.2 Turbulence Generation of Rotor 104 7 Conclusions and Future Work 115 Bibliography 116 | |
| dc.language.iso | en | |
| dc.title | 以大渦流法模擬風場跡流特性 | zh_TW |
| dc.title | Wind Farm Wake Prediction via a Large Eddy Simulation Approach | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾年勉(Hsin-Tsai Liu),蔡進發(Chih-Yang Tseng),吳毓庭,吳炳承,林宗岳 | |
| dc.subject.keyword | 大渦流模擬,致動盤模型,風場,風機跡流, | zh_TW |
| dc.subject.keyword | Large Eddy Simulation,Actuator Disk Model,Wind Farm,Wind Turbine Wake, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU202102967 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0209202119034300.pdf | 65.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
