Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79607
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉德銘(Der-Ming Yeh)
dc.contributor.authorYu-syuan Linen
dc.contributor.author林玗璇zh_TW
dc.date.accessioned2022-11-23T09:05:05Z-
dc.date.available2024-09-30
dc.date.available2022-11-23T09:05:05Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-09-12
dc.identifier.citation王鳳蘭、周厚高、黃子峰. 2004. 鐵炮百合葉片抗熱性型態指標初探. 湖北農學院學報 2:102-105. 王進學、葉德銘. 2013. 菊花之細胞膜熱穩定性檢測及其應用於篩選耐熱實生苗. 臺灣園藝. 59:153-166. 石玉波、錢長根、張平、卓麗環. 2016. 百子蓮花期調控技術研究. 上海農業學報 32:124-127. 李博. 2010. 不同調控途徑對百子蓮(Agapanthus praecox ssp. orientalis ‘Big Blue’)開花特性之影響. 東北林業大學碩士論文. 哈爾濱. 宋品慧、尤鈺鵑、劉明宗. 2014. 戀愛的造訪百子蓮(愛情花)簡介. 種苗科技專訊 87:16-18. 李敏、王維華、王然. 2004. 高溫脅迫對菠菜葉片保護酶活性和膜透性的影響. 園藝學報 31:99-100. 卓麗環、孫穎. 2009. 百子蓮的花部特徵與繁育系統觀察. 上海農業學報 36: 1697-1700. 卓麗環、孫穎. 2009. 遮光處理對大花百子蓮葉片結構特徵和光合特性的影響. 上海交通大學學報(農業科學版) 27:242-247. 卓麗環、李博、張琰、辛雅芬. 2010. 植物生長延緩劑對百子蓮開花的影響. 安徽農業科學 38:7807-7809. 柯勇. 2002. 植物生理學. 藝軒圖書出版社. 臺北. 臺灣. 張元聰. 2014. 補血草屬植物之低春化需求選育與指標, 開花度積值及親緣關係. 國立臺灣大學園藝暨景觀學系博士論文. 臺北. 郭城孟. 1997. 福山地區森林植群及物候研究. 行政院國家科學委員會專題研究計畫成果報告 全球變遷:福山森林生態系研究. 行政院國家科學委員會. 台北. 臺灣. 姚銘輝、盧虎生、朱鈞. 2002. 葉綠素螢光與作物生理反應. 科學農業 55:31-41. 姚銘輝、陳守泓、漆匡時. 2007. 利用葉綠素螢光估算作物葉片之光合作用. 台灣農業研究 56:224-236. 孫穎、卓麗環. 2009. 百子蓮的傳粉昆蟲及其訪花行為研究. 上海農業學報 1:87-91. 孫穎、卓麗環. 2010. 百子蓮種子發育生理生化特性. 東北林業大學學報 38: 57-59. 孫穎、王阿香、劉穎竹、卓麗環. 2013. 大花百子蓮的開花物候與生殖特性. 上海農業學報 12:2423-2431. 孫穎、馬翠青、嚴俊鑫、陳士惠、卓麗環. 2013. 大花百子蓮的花粉活力與柱頭可授性. 東北林業大學學報 7:89-92. 孫穎、馬翠青、陳士惠、卓麗環. 2014. 大花百子蓮的結實和結籽格局及種子產量影響因素分析. 植物資源與環境學報 23:48-53. 陳思如. 2007. 非洲菊耐熱指標與切花生理. 國立臺灣大學園藝學系碩士論文. 臺北. 陳思如、葉德銘. 2013. 非洲菊耐熱相關之形態適應與生理特性. 臺灣園藝 52:123-138. 陳香波、呂秀立、尹麗娟、馮建華、張冬梅. 2020. 不同地區與栽培環境百子蓮種子形態與發芽比較. 上海農業學報 36:43-47. 陳香波、申瑞雪、呂秀立、馮建華、李圃錦、張冬梅. 2020. 不同基質栽培百子蓮生長效應評價. 中國農學通報6:73-79. 曾夢蛟. 1990. 溫度逆境生理在園藝育種上之應用. p. 69-79. 刊於:杜金池、蕭吉雄、楊偉正主編. 園藝作物育種講習會專刊. 臺灣省農業試驗所. 臺中. 劉嘉賓. 1998. 天鵝絨及百子蓮之繁殖及開花之研究. 國立臺灣大學園藝系碩士論文. 臺北. 劉卓翰. 2019. 百子蓮之花粉發芽、種子發芽、儲藏及切花保鮮之探討. 國立嘉義大學農藝學系碩士論文. 嘉義. Adhikari, K.N. and C.G. Campbell. 1998. In vitro germination and viability of buckwheat (Fagopyrum esculentum Moench) pollen. Euphytica 102:87-92. Anderson, J., G. McCollum, and W. Roberts. 1990. High temperature acclimation in pepper leaves. HortScience 25:1272-1274. Anderson, J.A. and S.R. Padhye. 2004. Protein aggregation, radical scavenging capacity, and stability of hydrogen peroxide defense systems in heat-stressed vinca and sweet pea leaves. J. Amer. Soc. Hort. Sci. 129:54-59. Bañon, S., J.A. Fernandez, J.A.Franco, A. Torrecillas, J.J. Alarcon, and M.J. S nchez-Blanco. 2004. Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Scientia. Hort. 101:333-342. Baskaran, P. and J. Van Staden. 2013. Rapid in vitro micropropagation of Agapanthus praecox. South. Afr. J. Bot. 86:46-50. Bauer, H. and U. Bauer.1980. Photosynthesis in leaves of the juvenile and adult phase of ivy (Hedera helix). Physiol. Plant. 49:366-372. Berry, J. and O. Bjorkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31: 491-543. Bhandari, S. R., Y.H. Kim, and J.G. Lee. 2018. Detection of temperature stress using chlorophyll fluorescence parameters and stress-related chlorophyll and proline content in paprika (Capsicum annuum L.) seedlings. Korean J. Hort. Sci. Technol. 36:619-629. Bose T.K., B.K. Jana and T.P. Mukhopadhyay. 1980. Effects of growth regulators on growth and flowering in Hippeastrum hybridum Hort. Scientia. Hort. 12:195-200. Brewbaker, J.L. and B.H. Kwack. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Amer. J. Bot. 50:859-865. Brink, R.A. 1924. The physiology of pollen IV. Chemotropism: effects on growth of grouping grains; formation and function of callose plugs; summary and conclusion. Amer. J. Bot. 11:417-436. Burge, G.K., E.R. Morgan, J.F. Seelye, G.E. Clark, A. McLachlan, and J.R. Eason. 2010. Prevention of floret abscission for Agapanthus praecox requires an adequate supply of carbohydrate to the developing florets. South Afr. J. Bot. 76:30-36. Burke, J.J., J. Velten, and M.J. Oliver. 2004. In vitro analysis of cotton pollen germination. Agron. J. 96:359-368. Caemmerer, S.V. and G.D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. Camejo, D., P. Rodr ́ıguez, M.A. Morales, J. M. Dell’Amico, A. Torrecill and J.J. Alarc. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162:281–289. Camejo, D., P. Rodríguez, M.A. Morales, J.M. Dell’Amico, A. Torrecillas, and J.J.Alarcón. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162:281-289. Chen, H.H., Z.Y. Shen, and P.H. Li. 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719-725. Chen, W.L., W.J. Yang, H. F. Lo., and D.M. Yeh. 2014. Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Scientia Hort.179:367-375. Chen, Y.J., Y.G. Zu, H.M. Liu, Y.B. He, and Y. Gao. 2008. Effect of drought on membrane lipid peroxidation and protective enzymes activities in cells of different Kentucky bluegrass (Poa pratensis L.) eultivars. Chinese J. Grassl. 30:32-36. Coast, O., A.J. Murdoch, R.H. Ellis, F.R. Hay, and K.S.V. Jagadish, 2016. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant Cell Environ. 39:26-37. Costa, E. S., R. Bressan-Smith, J. G. Oliveira, and E. Campostrini. 2003. Chlorophyll a fluorescence analysis in response to excitation irradiance in bean plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp) submitted to high temperature stress. Photosynthetica 41:77–82. Crafts-Brandner, S.J. and M.E. Salvucci. 2002 Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129:1773–1780. Crafts-Brandner, S.J. and R.D. Law. 2000. Effect of heat stress on the inhibition and recovery of ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta 212:67–74. Craufurd P.Q., P.V.V. Prasad, V.G. Kakani, T.R. Wheeler and S.N. Nigam. 2003. Heat tolerance in groundnut. Field Crops Res. 80: 63–77. Cui, L., J. Li, Y. Fan, S. Xu, and Z. Zhang. 2006. High temperature effects on photosynthesis, PSII functionality and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Bot. Studies 47:61-69. Dafni, A., and M.M. Maués. 1998. A rapid and simple procedure to determine stigma receptivity. Sex. Plant Reprod. 11:177–180. Dawson, M., and K. Ford. 2012. Agapanthus in New Zealand. N.Z. Garden J. 15:2-18. Delph, F.L., H.M. Johannsson and G.A. Stephenson. 1997. How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology 78: 1632–1639. Deng, Z. and B.K. Harbaugh. 2004. Technique for in vitro pollen germination and short-term pollen storage in caladium. HortScience 39:365-367. Duncan, G. 1998. Grow Agapanthus: A guide to the species, cultivation and propagation of the genus Agapanthus. Kirstenbosch National Botanical Institute, Cape Town, South Africa. Fokar. M., A. Blum, and H.T. Nguyen. 1998. Heat tolerance in spring wheat. II. Grain filling. Euphytica 104:9-15. Ford, K., and M. Dawson. 2010. Fertility and ability to hybridise in two ‘eco-friendly’ dwarf cultivars of Agapanthus L'Hér. (Amaryllidaceae) in New Zealand. Lancare research report prepared for Auckland Regional Council Biosecurity. Gorbe, E., and A. Calatayud. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Hort. 138:24-35. Greyvenstein, O., T. Starman, B. Pemberton, G. Niu, and D. Byrne. 2015. Development of a rapid screening method for selection against high temperature susceptibility in garden roses. HortScience 50: 1757-1764. Griffin, J.J., T.G. Ranney and D.M. Pharr 2004. Heat and drought influence photosynthesis, water relation and soluble carbohydrates of two ecotype of redbud (Cercis canadensis) J. Amer. Soc. Hort. Sci. 129:497-502. Hall, A.E. 2001. Croop response to environment. CRC Press LLC, Boca Raton, Florida. Harel, D., H. Fadida, A. Slepoy, S. Gantz, and K. Shilo. 2014. The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy 4:167-177. Hedhly, A., J.I. Hormaza, and M. Herrero. 2003. The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant Cell Environ. 26:1673-1680. Hedhly, A., J.I. Hormaza, and M. Herrero. 2004. Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). Amer. J. Bot. 91:558-564 Hedhly, A., J.I. Hormaza, and M. Herrero. 2005. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol. 7:476-483. Hedhly, A., J.I. Hormaza, and M. Herrero. 2009. Global warming and sexual plant reproduction. Trends Plant Sci. 14:30-36. Higuchia, H., T. Sakuratania, and N. Utsunomiya. 1999. Photosynthesis, leaf morphology, and shoot growth as affected by temperature in cherimoya (Annona herimola Mill) trees. Scientia Hort. 80:91-104. Honda, K., H. Watanabe, and K. Tsutsui. 2002. Cryopreservation of Delphinium pollen at -30℃. Euphytica 126:315-320. Hormaza, J.I. and M. Herrero. 1996. Male gametophytic selection as a plant breeding tool. Scientia Hort. 65:321-333. Hossain, M.M., H. Takeda, and T. Senboku. 1995. Improved method of determination of membrane thermostability for screening heat-tolerant and sensitive varieties in Brassica. JIRCAS J. Sci. Papers (Jpn.) 2:19-27. Hou, W., A.H. Sun, H.L. Chen, F.S. Yang, J.L. Pan, and M.Y. Guan. 2016. Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings. Biol. Plant. 60:148-154. Ibrahim, A.M.H., and J.S. Quick. 2001. Heritability of heat tolerance in winter and spring wheat. Crop Sci. 41:1401–1405. Ibrahim, H.M. 2011. Heat stress in food legumes: evaluation of membrane thermostability methodology and use of infra-red thermometry. Euphytica 180:99-105. Ingram, D.L. and D.W. Buchanan. 1984. Lethal high temperature for roots of three citrus rootstocks. J. Amer. Soc. Hort. Sci. 109:189-193. Ismail, A.M. and A.E. Hall. 1999. Reproductive stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762-1768. Jagadish, S.V.K., R. Muthurajan, R. Oane, T.R. Wheeler, S. Heuer, J. Bennett, and P.Q. Craufurd. 2010. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J. Expt. Bot. 61:143–156. Jain, M., P.V.V. Prasad, K.J. Boote, A.L. Jr. Hartwell, and P.S. Chourey. 2007. Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227:67-79. Jóhannsson, M.H. and A.G. Stephenson. 1998. Effects of temperature during microsporogenesis on pollen performance in Cucurbita pepo L. (Cucurbitaceae). Intl. J. Plant Sci. 159:616–626. Kakani, V.G., K.R. Reddy, S. Koti, T.P. Wallace, P.V.V. Prasad, V.R. Reddy, and D. Zhao. 2005. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. 96:59-67. Kakani, V.G., P.V.V. Prasad, P.Q. Craufurd, and T.R. Wheeler. 2002. Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ. 25:1651-1661. Kalaji, H. M., A. Oukarroum, V. Alexandrov, M. Kouzmanova, M. Brestic, M. Zivcak, and V. Goltsev. 2014. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 81:16-25. Kamenetsky, R., and H.D. Rabinowitch. 2002. Florogenesis. H.D. Rabinowitch, L. Currah (Eds.), Allium crop science: Recent advances, CAB International, Wallingford, UK. Kamkar, B., M.J. Al-Alahmadi, A. Mahdavi-Damghani, and F.J. Villalobos. 2012. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Ind. Crops Prod. 35:192-198. Khatum, S. and T.J. Flowers. 1995. The estimation of pollen viability in rice. J. Expt. Bot. 46:151–154. Kobza, J., and G.E. Edwards. 1987 Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiol. 83:69-74. Kulloli, S.K., Ramasubbu, R., Sreekala, A.K. and A.G. Pandurangan. 2010. Cytochemical localization of stigma-surface esterase in three species of Impatiens (Balsaminaceae) of Western Ghats. Asian J. Expt. Biol. Sci. 1:106–111. Kuo, C.G., B.J. Shen, H.M. Chen, H.C. Chen, and R.T. Opeña. 1988. Association between heat tolerance, water consumption, and morphological characters in Chinese cabbage. Euphytica 39:65-73. Kuo, C.G., H.M. Chen, and H.C. Sun. 1993. Membrane thermostability and heat tolerance of vegetable leaves, p. 160–168. In C.G. Kuo (ed.). Adaptation of food crops to temperature and water stress. Asian Veg. Res. Dev. Center, Shanhua, Taiwan. Lankinen, Å. 2001. In vitro pollen competitive ability in Viola tricolor: Temperature and pollen donor effects. Oecologia 128:492-498. Law, R.D., and S.J. Crafts-Brandner. 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol. 120: 173-181. Le Nard, M. and A.A. De Hertogh. 1993. Bulb growth and development and flowering. The Physiology of Flower Bulbs, Elsevier Science Publishers B.V., Amsterdam, The Netherlands. Leighton, F. M. 1965. The Genus Agapanthus L' Heritier. S. Afr. J. Bot., supplementary volume IV. Lester, G.E. 1985. Leaf cell membrane thermostabilities of Cucumis melo. J. Amer. Soc. Hort. Sci. 110:506-509. Loo, T.L. and T.C. Hwang. 1944. Growth stimulation by manganese sulphate, indole-3-acetic acid and colchicine in pollen germination and pollen tube growth. Amer. J. Bot. 31:356-367. Ludmila, R., H. Liang, and R. Mittler. 2002. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 130:1143-1151. Marcum, K.B. 1998. Cell membrane thermostability and whole‐plant heat tolerance of Kentucky bluegrass. Crop Sci. 38:1214-1218. Martineau, J.R., J.E. Specht, J.H. Williams and C.Y. Sullivan. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78. Mascarenhas, P.J. and L. Machlis. 1962. The pollen-tube chemotropic factor from Antirrhinum majus: Bioassay, extraction, and partial purification. Amer. Bot. 49: 482-489. Mascarenhas, P.J., 1990. Gene activity during pollen development. Annu. Rev. Plant Physiol. Plant Mol. BioI. 1990. 41:317-38 Matsui, T., K. Omasa, and T. Horie. 2000. High-temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod. Sci. 3:430-434. Mazer, S.J. 1987. Parental effects on seed development and seed yield in Raphanus raphanistrum: Implications for natural and sexual selection. Evolution 41:355-371. Mohammadi, V., M.R. Bihamta, and A.A. Zali. 2007. Evaluation of screening techniques for heat tolerance in wheat. Pak. J. Biol. Sci. 10:887-892. Molina, R.V., M. Valero, Y. Navarro, J.L. Guardiola and A. Garcia-Luis. 2005. Temperature effects on flower formation in saffron (Crocus sativus L.). Scientia Hort. 103:361-379. Mori, G. and Y. Sakaniishi. 1989. Effects of temperature on flowering of Agapanthus africanus Hoffmanns. J. Amer. Soc. Hort. Sci. 57: 685-689. Nyarko, G., P.G. Alderson, J. Craigon, E. Murchie, and D.L. Sparkes. 2008. Comparison of cell membrane thermostability and chlorophyll fluorescence parameters for the determination of heat tolerance in ten cabbage lines. J. Hort. Sci. Biotechnol. 83:678-682. O’Kelly, J.C. 1955. External carbohydrates in growth and respiration of pollen tubes in vitro. Amer. J. Bot. 42: 322-327. Ottaviano, E. and D.L. Mulcahy. 1986. Gametophytic selection as a factor of crop plant evolution, p. 101-120. In: C. Barigozzi (Ed.). The origin and domestication of cultivated plants. Elsevier, Amsterdam. Pasonen, H.L., M. Käpylä, and P. Pulkkinen. 2000. Effects of temperature and pollination site on pollen performance in Betula pendula Roth – evidence for genotype-environment interactions. Theor. Appl. Genet. 100:1108-1112. Paula, C.B. 2006. Morphological analysis of tropical bulbs and environmental effects on flowering and bulb development of Habranthus robustus and Zephyranthes spp. Master Thesis. Univ. Florida, Gainesville Petkova, V., I.D. Denev, D. Cholakov, and I. Porjazov. 2007. Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters. Scientia Hort.111:101-106. Poudyal, D., E. Rosenqvist, and C.O. Ottosen. 2018. Phenotyping from lab to field–tomato lines screened for heat stress using Fv/Fm maintain high fruit yield during thermal stress in the field. Funct. Plant Biol. 46:44-55. Prasad, P.V.V., K.J. Boote, L.H. Allen Jr, J.E. Sheehy and J.M.G. Thomas. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95:398-411. ur Rahman, H., S.A. Malik, and M. Saleem, M. 2004. Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Res. 85:149-158. Reddy, K.R. and V.G. Kakani. 2007. Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Hort. 112:130-135. Rees, A.R., 1992. Ornamental Bulbs, Corms and Tubers CAB International, Wallingford, UK . Reynolds, M.P., S. Nagarajan, M.A. Razzaque, and O.A.A. Ageeb. 2001. Heat tolerance. p. 124-135. In:Application of physiology in wheat breeding. M. P. Reynolds, J.I. Ortiz-Monasterio and A. McNab(eds.). CIMMYT. Mexico. Richer, C., M. Poulin, and J.A. Rioux. 2007. Factors influencing pollen germination in three Explorer (TM) roses. Can. J. Plant Sci. 87:115-119. Robbertse, P.J., J.J. Lock, E. Stoffberg, and L.A. Coetzer. 1990. Effect of boron on directionality of pollen tube growth in Petunia and Agapanthus. South Afr. Bot. 56: 487-492. Saadalla, M.M., J.F. Shanahan, and J.S. Quick. 1990. Heat tolerance in winter wheat: Ι. Hardening and genetic effects on membrane thermostability. Crop Sci. 30:1243-1247. Saini, H.S., M. Sedgley, and D. Aspinall. 1983. Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Aust. J. Plant Physiol. 10:137-144. Sairam, R.K., and A. Tyagi. 2004. Physiology and molecular biology of salinity. Curr. Sci. 407-421. Salvucci, M.E., and S.J. Crafts-Brandner. 2004. Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol. 134:1460-1470. Salvucci, M.E., K.W. Osteryoung, S.J. Crafts-Brandner, and E. Vierling. 2001. Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol. 127:1053-1064. Sangwan, V., B.L. Örvar, J. Beyerly, H. Hirt, and R.S. Dhindsa. 2002. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 31:629-638. Shanahan, J.F., I.B. Edwards, J.S. Quick, and J.R. Fenwick. 1990. Membrane thermostability and heat tolerance of spring wheat. Crop Sci. 30:247-251. Sharkey, T.D., M.R. Badger, S. von Caemmerer, and T.J. Andrews. 2001. Increased heat sensitivity of photosynthesis in tobacco plants with reduced Rubisco activase. Photosynth. Res. 67:147–156. Sedgley, M. and J. Harbard. 1993. Pollen storage and breeding system in relation to controlled pollination of four species of Acacia (Leguminosae. Mimosoideae). Aust. J. Bot. 41:601–609. Seenivasan, N., and J.S. Kuehny. 2008. Morphological, physiological, and anatomical characteristics associated with heat preconditioning and heat tolerance in Salvia splendens. J. Amer. Soc. Hort. Sci. 133:527-534. Senthil-Kumar, M., V. Srikanthbabu, Mohanraju, B., Kumar, G., Shivaprakash, N. and Udayakumar, M. 2003 Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique: A novel approach by exploiting residual variability. J. Expt. Bot. 54:2569 - 2578. Skogsmyr, I., and Å. Lankinen. 1999. Selection on pollen competitive ability in relation to stochastic factors influencing pollen deposition. Evol. Ecol. Res. 1:971-985. Shivanna, K.R. and N.S. Rangaswamy. 1992. Pollen Biology. Springer-Verlag, Germany. Singh, S.K., V.G. Kakani., D. Brand, B. Baldwin, and K.R. Reddy. 2008. Assessment of cold and heat tolerance of winter‐grown canola (Brassica napus L.) cultivars by pollen‐based parameters. J Agr. Crop Sci. 194:225-236. Sinsawat, V., J. Leipner, P. Stamp, and Y. Fracheboud. 2004. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Envion. Expt. Bot. 52: 123-129 Snoeijer, W. 2004. Agapanthus: A revision of the genus. Timber Press, Portland, Oregon, U.S.A. Song, G., M. Wang, B. Zeng, J. Zhang, C. Jiang, Q. Hu, G. Geng, and C. Tang. 2015. Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta 241:1271-1285. Souza, E.H., S.M. Carmello-Guerreiro, F.V.D. Souza, M.L. Rossi, and A.P. Martinelli. 2016. Stigma structure and receptivity in Bromeliaceae. Scientia Hort. 203:118-125. Stephenson, A.G., T.C. Lau, M. Quesada, and J.A. Winsor. 1992. Factors that affect pollen performance. p119–134. In:R. Wyatt [ed.], Ecology and evolution of plant reproduction, Chapman Hall, New York. Sukhvibul, N. and J.A. Considine. 1993. Medium and long term storage of Anigozanthos manglesii (D. Don) pollen. New Zealand J. Crop Hort. Sci. 21:343-347. Sukhvibul, N., A.W. Whiley, V. Vithanage, M.K. Smith, V.J. Doogan, and S.E. Hetherington. 2000. Effect of temperature on pollen germination and pollen tube growth of four cultivars of mango (Mangifera indica L.). J. Hort. Sci. Biotechnol. 75:214-222. Sung, D.Y., F. Kaplan, K.J. Lee, and C.L. Guy. 2003. Acquired tolerance to temperature extremes. Trends Plant Sci. 8:179-187. Szwarcbaum, I. 1982. Influence of leaf morphology and optical properties on leaf temperature and survival in three Mediterranean shrubs. Plant Sci. Lett. 26:47-56. Tang, R.S., J.C. Zheng, Z.Q. Jin, D.D. Zhang, Y.H. Huang, and L.G. Chen. 2008. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regulat. 54:37-43. Tuinstra, M.R. and J. Wedel. 2000. Estimation of pollen viability in grain sorghum. Crop Sci. 40:968-970. Van der Walt I.D. and G.M. Littlejohn. 1996. Storage and viability testing of Protea pollen. J. Amer. Soc. Hort. Sci. 121:804-809. Voyiatzi, C.I. 1995. An assessment of the in vitro germination capacity of pollen grains of five tea hybrid rose cultivars. Euphytica 83:199-204. Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: An review. Environ. Expt. Bot. 61:199-223. Wang, C.H., D.M. Yeh, and C.S. Sheu. 2008. Heat tolerance and flowering-heat-delay sensitivity in relation to cell membrane thermostability in chrysanthemum. J. Amer. Soc. Hort. Sci. 133:754–759. Wang, L.J. and S.H. Li. 2006. Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. J. Plant Growth Regul. 48: 137–144. Weinbaum, S.A., D.E. Parfitt, and V.S. Polito. 1984. Differential cold sensitivity of pollen grain germination in two Prunus species. Euphytica 33:419-426. Wu, M.T., and S.J. Wallner. 1983. Heat stress responses in cultured plant cells: Development and comparison of viability tests. Plant Physiol. 72:817-820. Yeh, D.M. and H.F. Lin. 2003. Thermostability of cell membranes as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128:656-660. Yeh, D.M. and P.Y. Hsu. 2004. Heat tolerance in English ivy as measured by an electrolyte leakage technique. J. Hort. Sci. Biotechnol. 79: 298 - 302. Zhou, R., X. Yu, X. Li, T.M. Dos Santos, E. Rosenqvist, and C.O. Ottosen. 2020. Combined high light and heat stress induced complex response in tomato with better leaf cooling after heat priming. Plant Physiol. Biochem. 151:1-9. Zinn, K.E., M. Tunc-Ozdemir, and J.F. Harper. 2010. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Expt. Bot. 61:1959-1968. Zonneveld, B. and G. Duncan. 2003. Taxonomic implications of genome size and pollen colour and vitality for species of Agapanthus L’Heritier (Agapanthaceae). Plant Syst. Evol. 241:115-123.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79607-
dc.description.abstract"百子蓮(Agapanthus spp.) 為優良庭園植物,因具有夏季開花與罕見藍色花朵特性,目前已廣泛於景觀造園使用。然而臺灣對百子蓮物候適應性與耐熱性所知極少,本研究探討百子蓮於臺中新社區物候期特性,並以花粉、種子、細胞相對傷害值及葉綠素螢光值,探討測量品種於高溫逆境下之反應差異。 參試品種依開花時間區分為早生種:‘Big Blue’、‘Wolga’;中生種:‘Blue Baby’、‘Wavy Navy’、‘Purple Cloud’;晚生種:‘Hazy Day’、‘Storm Cloud’。百子蓮生長期具明顯季節性。物候現象約可分為七個階段,包括營養生長四個階段及生殖生長三個階段。所有品種的側芽萌生期約略落於八月至九月,常綠型大多於側芽萌生期後進入側芽葉片生長期,而落葉性品種則進入停滯期,此為兩品種群間之主要差異。常綠性品種之側芽葉片生長約於二月至四月間停止,進入停滯期,而落葉性品種約於二月重新開始生長,四月後生長速率逐漸趨緩。常綠性品種在花梗抽出前會出現約一個月的停滯期,並先後於四月底至六月中抽出花梗,而落葉性品種則約為六月底抽出花梗。 將八品種百子蓮花粉置於含 10% 蔗糖之BK培養基,以5℃為間隔,培養於水浴溫度5 - 45℃ 一小時,觀察溫度對花粉萌發率之影響,結果顯示百子蓮發芽率隨培養溫度上升逐漸增加,超過30°C則急劇下降。花粉發芽率具品種差異,以雙直線迴歸計算花粉發芽溫度三基點,最低發芽溫度(minimum temperature,Tmin)、最適發芽溫度(optimum temperature, Topt )及最高發芽溫度(maximum temperature, Tmax)分別為6℃、31.2℃、43.6℃。其中‘Wavy Navy’與‘Hazy Day’之Topt 較高,‘Purple Cloud’之Tmax較高,顯示此三品種可能具有耐熱潛力。 細胞電解質滲漏技術可用於量測細胞膜熱穩定性。以25、30、35、40、45、50、53、55、58、60、65或 70℃水浴溫度將8品種百子蓮葉片與花瓣圓片處理30分鐘後,所有品種的相對傷害值(relative injury, RI)隨水浴溫度增加而呈S曲線變化,葉片曲線轉折中點溫度約為53℃,以此水浴溫度進行品種耐熱性鑑定,結果顯示‘Blue Baby’ RI值最高,‘Wolga’、‘Storm Cloud’、‘Purple Cloud’及 ‘Wavy Navy’四品種較低;花瓣細胞相對傷害值反應與葉片接近,曲線轉折中點為50.1℃,顯示花瓣細胞對高溫更為敏感。 延續相對傷害值之試驗結果,挑選‘Blue Baby’、‘Big Blue’、‘Hazy Day’之種子,以5 - 25℃(每溫度處理間隔5℃)溫度處理。結果顯示5℃最大發芽率僅35%,隨溫度升高,各品種種子發芽率與發芽速率亦逐漸增加,僅‘Blue Baby’於25℃時發芽速率降低。‘Big Blue’及‘Hazy Day’發芽適溫為25℃,‘Blue Baby’則為20℃。依迴歸計算百子蓮發芽基礎溫度為1.9 - 2.3℃,種子發芽積溫為47 - 71℃d。 百子蓮‘Big Blue’以雙氧水與α-naphthyl acetate檢測柱頭活性,結果顯示百子蓮的柱頭於花開後第二天具可授粉性,為雌蕊後熟。以離體瓶插方式將百子蓮‘Big Blue’切花分別放置於平均溫度14、18、23、28及33℃ 溫控環境,於授粉後24小時調查體內花粉萌發情況,並記錄著果率、結種率與莢內種子數。‘Big Blue’體內花粉管於均溫23℃下皆生長正常,超過28℃高溫則出現花粉管末端膨大與伸長迴轉,並導致結實率與結籽率下降,顯示高溫造成百子蓮受精前障礙。 將三品種百子蓮栽培於日夜溫25/20與30/25℃環境。結果顯示‘Blue Baby’與‘Big Blue’之非光化學淬熄(non-photochemical quenching; qN)保持不變或增加,‘Hazy Day’則逐漸下降。25/20與30/25℃處理下,‘Hazy Day’之葉綠素螢光參數之最小螢光值(The minimal fluorescence in dark; Fo)、最大螢光釋放量(The maximum fluorescence in dark; Fm)及最大螢光參數的比值(maximum quantum efficiency of photosystem II, Fv/Fm)沒有明顯差異,而栽培於30/25℃ ‘Blue Baby’的Fv/Fm下降並維持於0.65,‘Big Blue’之Fv/Fm亦下降但逐漸回升,而‘Hazy Day’則維持於0.75-0.85間。‘Blue Baby’及‘Big Blue’於30/25℃下淨光合作用率降低,而‘Hazy Day’則無顯著差異。 百子蓮耐熱性品種選拔,建議的生理指標包括花粉最適發芽溫度(Topt)、葉片細胞相對傷害值(RI),以及葉綠素螢光參數:qN、Fo、Fm、Fv/Fm。參試品種Hazy Day因可於炎熱的六月及七月生長開花,或可作為良好的耐熱候選品種。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:05:05Z (GMT). No. of bitstreams: 1
U0001-1109202100535900.pdf: 2923936 bytes, checksum: 185b87ac4a35940d1d73df7592ef4f3f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 .....i Abstract .....iv 目錄 (Contents) .....vii 表目錄 (List of Tables) .....ix 圖目錄 (List of Figures) .....xi 前言 (Introduction) .....1 前人研究 (Literature review) .....3 一、百子蓮簡介 .....3 (一)、分類與歷史 .....3 (二)、形態與生長習性 .....4 (三)、授粉與繁殖方式 .....4 二、栽培環境對百子蓮與其他球根花卉生長之影響 .....5 (一)、溫度 .....5 (二)、光度 .....6 (三)、肥培管理 .....6 三、 百子蓮與其他球根花卉之開花生理 .....6 (一)、溫度 .....6 (二)、光週期 .....7 (三)、植物生長激素與調節劑 .....8 四、花粉篩選於作物育種之應用 .....8 (一)、花粉活力與發芽檢測 .....9 (二)、花粉檢測於耐熱育種之運用 .....11 五、高溫逆境下植物熱逆境反應 .....12 (一)、外觀形態 .....12 (二)、微觀結構 .....13 (三)、生理指標 .....14 材料與方法 (Materials and Methods) .....17 試驗一、 百子蓮之物候現象調查 .....17 試驗二、溫度對百子蓮花粉發芽率之影響 .....17 試驗三、溫度對百子蓮葉片與花瓣細胞膜熱穩定性之影響 .....18 試驗四、溫度對百子蓮種子發芽之影響 .....19 試驗五、柱頭可授性與溫度對花粉發芽及結實之影響 .....20 試驗六、百子蓮實生苗於高溫逆境之反應 .....22 結果 (Results) .....25 試驗一、百子蓮之物候現象調查 .....25 試驗二、溫度對百子蓮花粉發芽率之影響 .....27 試驗三、溫度對百子蓮葉片與花瓣細胞膜熱穩定性之影響 .....28 試驗四、溫度對百子蓮種子發芽之影響 .....29 試驗五、柱頭可授性與溫度對花粉發芽及結實之影響 .....30 試驗六、百子蓮實生苗於高溫逆境之反應 .....31 討論 (Discussion) .....64 試驗一、百子蓮之物候現象調查 .....64 試驗二、溫度對百子蓮花粉發芽率之影響 .....66 試驗三、溫度對百子蓮葉片與花瓣細胞膜熱穩定性之影響 .....67 試驗四、溫度對百子蓮種子發芽之影響 .....69 試驗五、柱頭可授性與溫度對花粉發芽及結實之影響 .....71 試驗六、百子蓮實生苗於高溫逆境之反應 .....73 結論(Conclusion) .....78 參考文獻 (References) .....80 附錄(Appendix) .....96
dc.language.isozh-TW
dc.title百子蓮之物候期與耐熱指標zh_TW
dc.titlePhenological phases and heat tolerant indicators of Agapanthusen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林淑怡(Hsin-Tsai Liu),許富鈞(Chih-Yang Tseng),朱玉
dc.subject.keyword百子蓮,物候期,耐熱,花粉,相對傷害值,細胞膜熱穩定性,zh_TW
dc.subject.keywordAgapanthus spp.,phenological phase,heat tolerance,pollen,relative injury value,cell membrane thermalstability,en
dc.relation.page99
dc.identifier.doi10.6342/NTU202103118
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2024-09-30-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1109202100535900.pdf2.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved