Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林博雄(Po-Hsiung Lin)
dc.contributor.authorMin-Ken Hsiehen
dc.contributor.author謝旻耕zh_TW
dc.date.accessioned2021-05-11T05:05:43Z-
dc.date.available2019-07-10
dc.date.available2021-05-11T05:05:43Z-
dc.date.copyright2019-07-10
dc.date.issued2019
dc.date.submitted2019-06-09
dc.identifier.citation1. Bruijnzeel, L. A., 2001: Hydrology of tropical montane cloud forests: A Reassessment. Land Use and Water Resources Research, 1, 1.1.
2. Central Weather Bureau, 2018: Climate Monitoring 2017 Annual Report, Central Weather Bureau, Taipei, Taiwan, 43 pp., Chinese, available at: https://www.cwb.gov.tw/V7/service/notice/download/publish_20181011155441.pdf.
3. Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research: Atmospheres, 101, 7251–7268, doi:10.1029/95JD02165.
4. Chien, M.-H., and C.-M. Wu, 2016: Representation of topography by partial steps using the immersed boundary method in a vector vorticity equation model (VVM): VVM PARTIAL STEP. Journal of Advances in Modeling Earth Systems, 8, 212–223, doi:10.1002/2015MS000514.
5. Clyne, J., and M. Rast, 2005: A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. R.F. Erbacher, J.C. Roberts, M.T. Grohn, and K. Borner, Eds., Electronic Imaging 2005, San Jose, CA, 284 http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.586032.
6. Clyne, J., P. Mininni, A. Norton, and M. Rast, 2007: Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys., 9, 301–301, doi:10.1088/1367-2630/9/8/301.
7. Dawson, T. E., 1998: Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia, 117, 476–485, doi:10.1007/s004420050683.
8. De Wekker, S. F. J., and M. Kossmann, 2015: Convective Boundary Layer Heights Over Mountainous Terrain—A Review of Concepts. Frontiers in Earth Science, 3, doi:10.3389/feart.2015.00077.
9. Deardorff, J. W., 1972: Parameterization of the Planetary Boundary layer for Use in General Circulation Models. Mon. Wea. Rev., 100, 93–106, doi:10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2.
10. Gultepe, I., and Coauthors, 2007: Fog Research: A Review of Past Achievements and Future Perspectives. Pure appl. geophys., 164, 1121–1159, doi:10.1007/s00024-007-0211-x.
11. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research, 113, doi:10.1029/2008JD009944.
12. Jung, J.-H., and A. Arakawa, 2008: A Three-Dimensional Anelastic Model Based on the Vorticity Equation. Mon. Wea. Rev., 136, 276–294, doi:10.1175/2007MWR2095.1.
13. Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvements of an Ice-Phase Microphysics Parameterization for Use in Numerical Simulations of Tropical Convection. Journal of Applied Meteorology, 34, 281–287, doi:10.1175/1520-0450-34.1.281.
14. Liang, Y.-L., T.-C. Lin, J.-L. Hwong, N.-H. Lin, and C.-P. Wang, 2009: Fog and Precipitation Chemistry at a Mid-land Forest in Central Taiwan. Journal of Environment Quality, 38, 627, doi:10.2134/jeq2007.0410.
15. Lin C.-A., 2015: The influence of near-surface boundary layer conditions on the advection fog. M.S. thesis, Department of Atmospheric Sciences, National Taiwan University, Taiwan, 62 pp.
16. Lu, S.-Y., K.-J., Tang, H.-Y., Ku, and H.-H., Huang, 2000: Climatic Conditions of Forested Lands of Taiwan Forestry Research Institute. Taiwan Journal of Forest Science, 15(3), 429–440.
17. Nowak, D., D. Ruffieux, J. L. Agnew, and L. Vuilleumier, 2008: Detection of Fog and Low Cloud Boundaries with Ground-Based Remote Sensing Systems. Journal of Atmospheric and Oceanic Technology, 25, 1357–1368, doi:10.1175/2007JTECHA950.1.
18. Scholl, M., W. Eugster, and R. Burkard, 2011: Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests. Hydrological Processes, 25, 353–366, doi:10.1002/hyp.7762.
19. Schulz, H. M., B. Thies, S.-C. Chang, and J. Bendix, 2015: Detection of ground fog in mountainous areas from MODIS day-time data using a statistical approach. Atmospheric Measurement Techniques Discussions, 8, 12155–12201, doi:10.5194/amtd-8-12155-2015.
20. Schulz, H. M., C.-F. Li, B. Thies, S.-C. Chang, and J. Bendix, 2017: Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLOS ONE, 12, e0172663, doi:10.1371/journal.pone.0172663.
21. Shutts, G. J., and M. E. B. Gray, 1994: A numerical modelling study of the geostrophic adjustment process following deep convection. Quarterly Journal of the Royal Meteorological Society, 120, 1145–1178, doi:10.1002/qj.49712051903.
22. Still, C. J., P. N. Foster, and S. H. Schneider, 1999: Simulating the effects of climate change on tropical montane cloud forests. Nature, 398, 608.
23. Terra, R., 2004: PBL Stratiform Cloud Inhomogeneities Thermally Induced by the Orography: A Parameterization for Climate Models. J. Atmos. Sci., 61, 644–663, doi:10.1175/1520-0469(2004)061<0644:PSCITI>2.0.CO;2.
24. Vaisala Oyj Corporation, 2006: Vaisala Ceilometer CL31 Users Guide, Vaisala Oyj Corporation, Vantaa, Finland.
25. Wey, T.-H., Y.-J., Lai, C.-S., Chang, C.-W., Shen, C.-Y., Hong, Y.-N. Wand, and M.-C., Chen, 2011: Preliminary Studies on Fog Characteristics at Xitou Region of Central Taiwan, Journal of the Experimental Forest of National Taiwan University, 25:149–160, Chinese.
26. Wey, T.-H., Y.-J., Lai, M.-C., Chen, and P.-H., Lin, 2016: The Studies on the Relationship Between Mountain Valley Breeze and Upslope Fog at Xitou Region in Central Taiwan, in: Proceeding of the 7th International Conference on Fog, Fog Collection and Dew, Wroclaw, Poland, 24-29 July 2016.
27. Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 376 pp.
28. Wilson, A. M., and A. P. Barros, 2015: Landform controls on low level moisture convergence and the diurnal cycle of warm season orographic rainfall in the Southern Appalachians. Journal of Hydrology, 531, 475–493, doi:10.1016/j.jhydrol.2015.10.068.
29. Wilson, A. M., and A. P. Barros, 2017: Orographic Land–Atmosphere Interactions and the Diurnal Cycle of Low-Level Clouds and Fog. Journal of Hydrometeorology, 18, 1513–1533, doi:10.1175/JHM-D-16-0186.1.
30. Wu, C.-M., and A. Arakawa, 2011: Inclusion of Surface Topography into the Vector Vorticity Equation Model (VVM): Inclusion of Surface Topography into the VVM, Journal of Advances in Modeling Earth Systems, 3(2), doi:10.1029/2011MS000061.
31. Wu, C.-M., H.-C. Lin, F.-Y. Cheng, and M.-H. Chien, 2019: Implementation of the land surface processes into a vector vorticity equation model (VVM) to study its impact on afternoon thunderstorms over complex topography in Taiwan. Asia-Pacific J. Atmos. Sci., accepted.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/795-
dc.description.abstract山區雲霧森林為經常雲霧繚繞的山地森林,在此環境下雲水及霧水可對生態系統提供額外的水文收支,此為山區雲霧森林一個重要且獨特的特性。本研究中透過雲冪儀的觀測以及理想數值模擬,針對溪頭谷地中地形產生之低層水氣輻合及成霧過程進行分析,此為首次以高解析度雲解析模式對溪頭地區進行模擬,嘗試了解起霧過程有關的局地環流之研究。觀測分析顯示雲冪儀觀測資料不但適合作為地面起霧與否之判定,亦可獲得更多低雲雲底高度變化的訊息。在2016年1月7日的起霧個案中,雲冪儀觀測顯示溪頭山谷的起霧過程乃是先有低層雲形成後,雲底逐漸下降至地面而形成霧的現象,而此一雲底降低的過程亦與溪頭谷地谷風的發展有所關連。為了進一步了解與起霧相關之水氣傳送過程,本研究使用具有高解析度(500 m)臺灣真實地表狀況與地形高度資料之渦度向量方程雲解析模式(TaiwanVVM)進行理想數值模擬,以探討溪頭山谷局地環流對於起霧過程之影響。數值模擬結果顯示,谷風沿著谷底上升之上坡風與其前緣所引發渦流均是溼化山谷邊界層進而導致山谷起霧的主要局地過程。而透過敏感度測試則進一步發現,溪頭山谷局地起霧持續時間長短受到了綜觀尺度環境的逆溫強度所控制。研究結果顯示,對於溪頭山谷的水氣供應而言,最主要是透過地形引起的低層水氣輻合效應來提供,而山谷邊界層上方的逆溫層覆蓋,則是限制了山谷內對流發展的高度,造成將水氣留存在山谷邊界層中的效果,故當山谷上方覆蓋的逆溫強度較強時,溪頭山谷內起霧的持續時間也會較長。zh_TW
dc.description.abstractMontane cloud forests (MCF) are characterized by forests that are frequently immersed in clouds or fog so that the interception of cloud/fog water provides extra hydrological input to this ecosystem. In this study, we examine the effects of orographically induced moisture convergence and the fog formation at Xitou valley of Taiwan by ceilometer observation and idealized cloud-resolving simulations. This work is the first attempt to understand the local circulation associated with fog at Xitou using a high-resolution cloud-resolving model. Observation analysis shows that the ceilometer is not only reliable to detect fog occurrence but also provides more information about low-level cloud base evolutions. In a fog case on Jan. 7th, 2016, the low-level cloud base lowering is observed before fog formation on the valley surface, which is also associated with the valley winds at Xitou valley. To understand the processes of the moisture transport associated with the fog formation, we perform idealized simulations using high-resolution vector vorticity equation cloud-resolving model (TaiwanVVM) with realistic land surface processes to evaluate the local circulation associated with the fog development. The simulations indicate that both the upslope winds and the turbulent eddies initiated by the upslope winds are primary local processes to moisten the boundary layer in the valley which leads to fog formation at Xitou. Sensitivity experiments show that local fog duration is controlled by synoptic temperature inversion strength. The results suggest that the effect of orographically induced low-level moisture convergence is the essential process to supply moisture in the Xitou valley, and the capping inversion helps the fog formation by limiting the development of convection and preserves moisture in the valley. The sensitivity experiments also suggest that the fog duration is longer with a stronger temperature inversion.en
dc.description.provenanceMade available in DSpace on 2021-05-11T05:05:43Z (GMT). No. of bitstreams: 1
ntu-108-R04229029-1.pdf: 2685679 bytes, checksum: 690430fb91c5c57a5d2ede4972e80331 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝辭 i
摘要 ii
ABSTRACT iii
Contents v
Figure captions vi
Table captions xii
1. Introduction 1
2. Study Area and Observations 5
3. Analysis of Observations and Case Study 7
4. Model Description and Experiments Setup 11
5. Simulation Results 15
6. Summary and Discussion 19
Reference 22
Tables 25
Figures 26
dc.language.isoen
dc.subject上坡風zh_TW
dc.subject山區雲霧森林zh_TW
dc.subject雲解析模式zh_TW
dc.subject地形效應zh_TW
dc.subject大渦流模擬zh_TW
dc.subject地形霧zh_TW
dc.subjectorographic effecten
dc.subjectlarge eddy simulationen
dc.subjectcloud-resolving modelen
dc.subjectmontane cloud foresten
dc.subjectorographic fogen
dc.subjectupslope winden
dc.title地形產生之低層水氣輻合效應與逆溫強度對上坡霧的控制:溪頭個案研究zh_TW
dc.titleEffects of orographically induced low-level moisture convergence and inversion strength on upslope fog: a case study at Xitouen
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor吳健銘(Chien-Ming Wu)
dc.contributor.oralexamcommittee陳維婷(Wei-Ting Chen),蘇世灝(Shih-Hao Su),賴彥任(Yen-Jen Lai)
dc.subject.keyword上坡風,地形霧,山區雲霧森林,雲解析模式,地形效應,大渦流模擬,zh_TW
dc.subject.keywordupslope wind,orographic fog,montane cloud forest,cloud-resolving model,orographic effect,large eddy simulation,en
dc.relation.page43
dc.identifier.doi10.6342/NTU201900872
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-06-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf2.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved