Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79597
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉俊麟(Chun-Lin Liu)
dc.contributor.authorTing-Yu Hsiehen
dc.contributor.author謝珽宇zh_TW
dc.date.accessioned2022-11-23T09:04:47Z-
dc.date.available2021-10-04
dc.date.available2022-11-23T09:04:47Z-
dc.date.copyright2021-10-04
dc.date.issued2021
dc.date.submitted2021-09-15
dc.identifier.citation[1]S. Yin, D. Chen, Q. Zhang, M. Liu, and S. Li. Mining spectrum usage data: Alarge­scale spectrum measurement study.IEEE Transactions on Mobile Computing,11(6):1033–1046, 2012. [2]A. Al­Hourani, V. Trajković, S. Chandrasekharan, and S. Kandeepan. Spectrum occupancy measurements for different urban environments. In 2015 European Con­ference on Networks and Communications (EuCNC), pages 97–102, 2015. [3]S. Haykin. Cognitive radio: brain­empowered wireless communications.IEEEJour­nal on Selected Areas in Communications, 23(2):201–220, 2005. [4]J. Wang, M. Ghosh, and K. Challapali. Emerging cognitive radio applications: A survey.IEEE Communications Magazine, 49(3):74–81, 2011. [5]E. Axell, G. Leus, E. G. Larsson, and H. V. Poor. Spectrum sensing for cognitive radio: State­of­the­art and recent advances.IEEE Signal Processing Magazine,29(3):101–116, 2012. [6]V. M. Patil and S. R. Patil. A survey on spectrum sensing algorithms for cognitive radio. In2016InternationalConferenceonAdvancesinHumanMachineInteraction(HMI), pages 1–5, 2016. [7]Z. Zeinalkhani and A. H. Banihashemi. Ultra low­complexity detection of spectrum holes in compressed wideband spectrum sensing. In2015 IEEE Global Communi­cations Conference (GLOBECOM), pages 1–7, 2015. [8]Z. Qin, Y. Gao, M. D. Plumbley, and C. G. Parini. Wideband spectrum sensing onreal­time signals at sub­nyquist sampling rates in single and cooperative multiple nodes.IEEE Transactions on Signal Processing, 64(12):3106–3117, 2016. [9]Bin Le, T. W. Rondeau, J. H. Reed, and C. W. Bostian. Analog­to­digital converters.IEEE Signal Processing Magazine, 22(6):69–77, 2005. [10]S. Hoyos, B. M. Sadler, and G. R. Arce. Monobit digital receivers for ultrawideband communications.IEEETransactionsonWirelessCommunications, 4(4):1337–1344,2005. [11]H. Sun, W. Chiu, and A. Nallanathan. Adaptive compressive spectrum sensing for wideband cognitive radios.IEEE Communications Letters, 16(11):1812–1815,2012. [12]S. K. Sharma, E. Lagunas, S. Chatzinotas, and B. Ottersten. Application of compres­sive sensing in cognitive radio communications: A survey.IEEE CommunicationsSurveys Tutorials, 18(3):1838–1860, 2016. [13]Z. Tian and G. B. Giannakis. Compressed sensing for wideband cognitive radios. In2007 IEEE International Conference on Acoustics, Speech and Signal Processing ­ICASSP ’07, volume 4, pages IV–1357–IV–1360, 2007. [14]Z. Qin, Y. Gao, and C. G. Parini. Data­assisted low complexity compressive spec­trum sensing on real­time signals under sub­nyquist rate.IEEE Transactions on Wireless Communications, 15(2):1174–1185, 2016. [15]S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Baraniuk. Analog­to­information conversion via random demodulation. In2006IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software, pages 71–74, 2006. [16]Y. L. Polo, Ying Wang, A. Pandharipande, and G. Leus. Compressive wide­bandspectrum sensing. In2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 2337–2340, 2009. [17]Y. Wang, Z. Tian, and C. Feng. Sparsity order estimation and its application in compressive spectrum sensing for cognitive radios.IEEE Transactions on Wireless Communications, 11(6):2116–2125, 2012. [18]D. D. Ariananda and G. Leus. Wideband power spectrum sensing using sub­nyquistsampling. In2011IEEE12thInternationalWorkshoponSignalProcessingAdvancesin Wireless Communications, pages 101–105, 2011. [19]Dyonisius Dony Ariananda and Geert Leus. Compressive wideband power spectrum estimation.Signal Processing, IEEE Transactions on, 60:4775–4789, 09 2012. [20]R. Venkataramani and Y. Bresler. Perfect reconstruction formulas and bounds on aliasing error in sub­nyquist nonuniform sampling of multiband signals.IEEETrans­actions on Information Theory, 46(6):2173–2183, 2000. [21]R. B. Bacchus, A. J. Fertner, C. S. Hood, and D. A. Roberson. Long­term, wide­band spectral monitoring in support of dynamic spectrum access networks at the iit spectrum observatory. In2008 3rd IEEE Symposium on New Frontiers in DynamicSpectrum Access Networks, pages 1–10, 2008. [22]Y. Chen and H. Oh. A survey of measurement­based spectrum occupancy modeling for cognitive radios.IEEECommunicationsSurveysTutorials, 18(1):848–859, 2016. [23]T. Xiong, H. Li, P. Qi, Z. Li, and S. Zheng. Predecision for wideband spectrum sensing with sub­nyquist sampling.IEEE Transactions on Vehicular Technology,66(8):6908–6920, 2017. [24]Saman Atapattu, Chintha Tellambura, and Hai Jiang.ConventionalEnergyDetector,pages 11–26. Springer New York, New York, NY, 2014. [25]J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statistical hypotheses.Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 231:289–337, 1933. [26]C.­L. Liu and Z.­M. Lin. One­bit autocorrelation estimation with non­zero thresh­olds.the 2021 IEEE International Conference on Acoustics Speech and Signal Pro­cessing (ICASSP 2021), 2021. [27]Chanki Park and Boreom Lee. Online compressive covariance sensing.Signal Pro­cessing, 162:1–9, 2019. [28]D. D. Ariananda and G. Leus. Compressive wideband power spectrum estimation.IEEE Transactions on Signal Processing, 60(9):4775–4789, 2012. [29]D. J. Thomson. Spectrum estimation and harmonic analysis.Proceedings of the IEEE, 70(9):1055–1096, 1982. [30]Behtash Babadi and Emery N. Brown. A review of multitaper spectral analysis.IEEE Transactions on Biomedical Engineering, 61(5):1555–1564, 2014. [31]R. B. Blackman and J. W. Tukey. The measurement of power spectra from the point of view of communications engineering—part i.The Bell System Technical Journal,37(1):185–282, 1958. [32]DB Percival and AT Walden.Spectral analysis for physical applications. Multitaperand conventional univariate techniques. Cambridge University Press, 1993. [33]Tommaso Proietti and Alessandra Luati. Low­Pass Filter Design using Lo­cally Weighted Polynomial Regression and Discrete Prolate Spheroidal Sequences.MPRA Paper 15510, University Library of Munich, Germany, June 2009. [34]Sudhamani Chilakala and M. Satya Sai Ram. Optimization of cooperative secondary users in cognitive radio networks.Engineering Science and Technology, an Interna­tional Journal, 21(5):815–821, 2018. [35]T. Xiong, H. Li, P. Qi, Z. Li, and S. Zheng. Predecision for wideband spectrum sensing with sub­nyquist sampling.IEEE Transactions on Vehicular Technology,66(8):6908–6920, 2017. [36]B. Champagne. Adaptive eigendecomposition of data covariance matrices based onfirst­order perturbations.IEEE Transactions on Signal Processing, 42(10):2758–2770, 1994. [37]A. Mariani, A. Giorgetti, and M. Chiani. Effects of noise power estimation on energy detection for cognitive radio applications.IEEE Transactions on Communications,59(12):3410–3420, 2011. [38]D. Karampoulas, L. S. Dooley, and S. Kouadri. A multitaper­random demodula­tor model for narrowband compressive spectral estimation. In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 1362–1366,2015. [39]Shaobing Chen and D. Donoho. Basis pursuit. InProceedingsof199428thAsilomarConference on Signals, Systems and Computers, volume 1, pages 41–44 vol.1, 1994. [40]S. G. Mallat and Zhifeng Zhang. Matching pursuits with time­frequency dictionaries.IEEE Transactions on Signal Processing, 41(12):3397–3415, 1993. [41]D. Cohen and Y. C. Eldar. Sub­nyquist sampling for power spectrum sensing in cognitive radios: A unified approach.IEEE Transactions on Signal Processing,62(15):3897–3910, 2014. [42]John Leech. On the representation of 1, 2,..., n by differences.Journal of the London Mathematical Society, s1­31(2):160–169, 1956.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79597-
dc.description.abstract隨著壓縮感知理論的興起,基於次Nyquist取樣的寬頻頻譜感知再訊號處理領域變成一個熱門的研究主題。然而,大部分已知的方法並沒有事先確認在觀測的頻寬內是否存在主要用戶的訊號而是直接將主要用戶訊號的頻譜復原。而如果整個頻寬內並沒有包含任何訊號並且接收到訊號只包含雜訊的話,直接尋求訊號頻譜可能會導致錯誤的估測結果並且浪費運算資源。為了解決這些問題,PCER探測器被提了出來。然而我們發現PCER探測器並不適用於訊號有包含高斯程序的情況。因此我們提出了一個新的預決策探測器,新的探測器能夠處理上述PCER探測器無法應付的情況。在進行預決策後,會接著進行頻譜估測。我們利用Multitaper的概念提出了一個新的頻譜估測方法,經過一些數學推導後,我們發現欲估測的頻譜可以由簡單的最小平方法得到。整體而言,整個寬頻頻譜感知系統可以分為三個部分,次Nyquist取樣,預決策,頻譜估測。 這篇論文主要分成兩個部分。第一個部分為提出的預決策探測器的介紹,我們利用次Nyquist取樣點來得到我們的檢驗統計量,再進行一些數學運算後,可以得到最後的決策結果。我們也推導出了決策閾值和偵測機率的解析解。模擬結果顯示了新的探測器能在很大的雜訊比範圍內診測到主要用戶訊號的存在,並且能夠解決高斯程序無法被偵測的問題。 第二個部分為提出的頻譜估測方法的介紹。利用Multitaper的觀念,我們推導出收到的次Nyquist取樣點和訊號頻譜之間的關係,並且我們發現頻譜能夠利用最小平方法來進行還原。為了使估測的頻譜具有唯一性,我們也介紹了基於最小尺刻度問題的一種Multicoset取樣方式。模擬結果驗證了理論推導的正確性,並且顯示出了提出的方法能在雜訊比很低的情況下有很好的性能,能夠有效的對抗雜訊。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:04:47Z (GMT). No. of bitstreams: 1
U0001-1409202103160900.pdf: 5391833 bytes, checksum: a45229653ff159e9de2ce8c6644507ab (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsContents Verification Letter from the Oral Examination Committee . . . . . . . . . . . . i 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv Chapter 1: Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Chapter 2: Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.1 System model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Signal Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Sub­Nyquist Sampling. . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Sampling Pattern Design. . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Review of Multitaper. . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Second­Order Statistics and their Spectral Representation. . . . . . 14 2.2.2 Multitaper Spectral Estimate. . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Tapers of Multitaper. . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 PCER Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 One­Bit Noise Estimator. . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 One­Bit Quantizer. . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Noise Estimation using One­Bit Quantizer. . . . . . . . . . . . . . 27 2.5 Other Sub­Nyquist Spectrum Estimation Methods. . . . . . . . . . . 30 2.5.1 Associative Array­Based Compressive Covariance Sensing. . . . . 31 2.5.2 Online Compressive Covariance Sensing. . . . . . . . . . . . . . . 33 Chapter 3: Predecision for Wideband Spectrum Sensing. . . . . . . . . . . . . . .35 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Proposed Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 False Alarm Probability Analysis. . . . . . . . . . . . . . . . . . . 41 3.5 Detection Probability Analysis. . . . . . . . . . . . . . . . . . . . . 45 3.6 Time Complexity Analysis. . . . . . . . . . . . . . . . . . . . . . . 48 3.7 Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.7.1 Detection Performance under Different Noise Powers. . . . . . . . 50 3.7.2 Histograms of Different Methods. . . . . . . . . . . . . . . . . . . 53 3.7.3 ROC Curves of Different Methods. . . . . . . . . . . . . . . . . . 56 3.7.4 Detection Performance of Different Sample Measurements. . . . . 59 3.7.5 Detection Performance of Different Channel Numbers. . . . . . . . 60 3.7.6 Detection Performance of Different Signals. . . . . . . . . . . . . 62 3.7.7 Computational Time with Different Sample Measurements. . . . . 64 3.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 4: Wideband Power Spectrum Estimation based on Multitaper. . . . . . . .67 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 Signal Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3 Proposed Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.1 Construction of Eigenspectrum of Proposed Algorithm. . . . . . . 69 4.3.2 Power Spectrum Reconstruction using Least ­Squares Method. . . 70 4.3.3 Sampling Pattern for Proposed Algorithm. . . . . . . . . . . . . . 72 4.4 Power Spectrum Estimation with Additional Constraints. . . . . . . 76 4.5 Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5.1 The Estimated Power Spectrum Using Proposed Algorithm. . . . . 78 4.5.2 Estimation Performance at Different Sampling Time. . . . . . . . . 80 4.5.3 Estimation Performance under Different SNRs. . . . . . . . . . . . 81 4.5.4 Comparison of Time Complexity for Different Method. . . . . . . 82 4.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Chapter 5: Simulation of Wideband Spectrum Sensing System. . . . . . . . . . . 85 5.1 Performance under Different Noise Powers. . . . . . . . . . . . . . 90 5.2 Performance of low Sample Measurements. . . . . . . . . . . . . . 93 5.3 Performance of low Compression Rate. . . . . . . . . . . . . . . . 97 5.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Chapter 6: Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Chapter 7: Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
dc.language.isoen
dc.title利用次Nyquist取樣方式於寬頻頻譜感知: 預決策與頻譜估計zh_TW
dc.titleWideband Spectrum Sensing with Sub-Nyquist Sampling: Predecision and Spectrum Estimationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馮世邁(Hsin-Tsai Liu),蘇柏青(Chih-Yang Tseng)
dc.subject.keyword寬頻頻譜感知,Multicoset取樣,預決策,Multitaper,最小平方法,尺刻度問題,zh_TW
dc.subject.keywordWideband Spectrum Sensing,Multicoset Sampling,Predicision,Multitaper,Least-Squares Method,Sparse Ruler Problem,en
dc.relation.page110
dc.identifier.doi10.6342/NTU202103159
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1409202103160900.pdf5.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved