請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79596完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡志偉(Chi-Wei Tsai) | |
| dc.contributor.author | Yu-Yuan Huang | en |
| dc.contributor.author | 黃玉媛 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:04:45Z | - |
| dc.date.available | 2023-09-30 | |
| dc.date.available | 2022-11-23T09:04:45Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-15 | |
| dc.identifier.citation | Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. 2011. Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250-81. Ahuja I, Kissen R, Bones AM. 2012. Phytoalexins in defense against pathogens. Trends Plant Sci 17: 73-90. Amagasa J. 1981. Dye binding and photodynamic action. Photochem Photobiol 33: 947-955. Amor TB, Tronchin M, Bortolotto L, Verdiglione R, Jori G. 1998. Porphyrins and related compounds as photoactivatable insecticides. I. Phototoxic activity of hematoporphyrin toward Ceratitis capitata and Bactrocera oleae. Photochem Photobiol 67: 206-11. Amor TB, Jori G. 2000. Sunlight-activated insecticides: historical background and mechanisms of phototoxic activity. Insect Biochem Mol Biol 30: 915-925. Aref NB. 2010. Effect of Rose Bengal on Hylemyia antiqa (Meigen) (Diptera: Anthomyiidae). J Am Sci 6: 27-30. Awad HH, El-Tayeb TA, El-Aziz NMA, Abdelkader MH. 2008. A semi-field study on the effect of novel hematoporphyrin formula on the control of Culex pipiens larvae. J Agri Soc Sci 4: 85-8. Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Häder DP. 2014. Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113: 4321-4326. Bakker J, Gommers FJ, Nieuwenhuis I, Wynberg H. 1979. Photoactivation of the nematicidal compound alpha-terthienyl from roots of marigolds (tagetes species) a possible singlet oxygen role. J Biol Chem 254:1841-1844. Barbieri A. 1928. Fluorescent sensitising substances as larvicides. The photodynamic action of light. Riv Malariol 7: 456-463. Basit M. 2019. Status of insecticide resistance in Bemisia tabaci: resistance, cross-resistance, stability of resistance, genetics and fitness costs. Phytoparasitica 47: 207-225 Bayhan E, Ulusoy MR, Brown JK. 2006. Host range, distribution, and natural enemies of Bemisia tabaci ‘B biotype’ (Hemiptera: Aleyrodidae) in Turkey. J Pest Sci 79: 233-240. Belloc F, Dumain P, Boisseau MR, Jalloustre C, Reiffers J, Bernard P, Lacombe F. 1994. A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells. Cytometry 17: 59-65. Berenbaum M. 1995. Phototoxicity of plant secondary metabolites: Insect and mammalian perspectives. Arch Insect Biochem Physiol 29: 119-134. Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall RA, et al. 2007. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 44:1306-19. Brown SB, Brown EA and Walker I. 2004. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5: 497-508. Casida JE. 1980. Pyrethrum flowers and pyrethroid insecticides. Environ Health Perspect 34: 189-202. Chang KP, Kolli BK, New light group. 2016. New 'light' for one-world approach toward safe and effective control of animal diseases and insect vectors from leishmaniac perspectives. Parasit Vectors 9:396. de Barro PJ, Liu SS, Boykin LM, Dinsdale A. 2011. Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1-19. de Souza LM, Inada NM, Venturini FP, Carmona-Vargas CC, Pratavieira S, de Oliveira KT, Kurachi C, Bagnato VS. 2019. Photolarvicidal effect of curcuminoids from Curcuma longa Linn. against Aedes aegypti larvae. J Asia Pac Entomol 22:151-158. de Souza LM, Venturini FP, Inada NM, Iermak I, Garbuio M, Mezzacappo NF, de Oliveira KT, Bagnato VS. 2020. Curcumin in formulations against Aedes aegypti: Mode of action, photolarvicidal and ovicidal activity. Photodiagnosis Photodyn Ther 31:101840. Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P. 2010. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196-208. Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. 2020. Singlet oxygen in plants: generation, detection, and signaling Roles. Int J Mol Sci 21:3237. El-Tayeb TA, Abd El-Aziz NM, Awad HH. 2013. A study on the dynamics of Aedes caspius larval uptake and release of novel haematoporphyrin. Afr Entomol 21: 15-23. Fabris C, Soncin M, Jori G, Habluetzel A, Lucantoni L, Sawadogo S, Guidolin L, Coppellotti O. 2012. Effects of a new photoactivatable cationic porphyrin on ciliated protozoa and branchiopod crustaceans, potential components of freshwater ecosystems polluted by pathogenic agents and their vectors. Photochem Photobiol Sci 11: 294-301. Finkel T. 2011. Signal transduction by reactive oxygen species J. Cell Biol 194:7-15. Fondren JE, Norment BR, Heitz JR. 1978. Dye-sensitized photooxidation in the house fly Musca domestica. Environ Entomol 7: 205-208. Hamblin MR, Hasan T. 2004. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3: 436-50. Heitz JR. 1987. Development of photoactivated compounds as pesticides. In: Heitz JR, Downum KR, editors. Light activated pesticides. Washington DC: ACS Symp Series 339: 1-21. Hussein MA, Fattah HMA, Khaled AS, Attia RG. 2015. Effect of some photosensitizing compounds on the house fly, Musca domestica (Muscidae: Diptera). Egypt J Exp Biol 11: 213-217. Issawi M, Sol V and Riou C. 2018. Plant photodynamic stress: What’s new? Front Plant Sci 9:681. Jori G and Spikes JD. 1994. Photobiochemistry of porphyrins, in topics in photomedicine, ed. K. C. Smith, Plenum Press, New York 183-319. Jori G and Coppellotti O. 2007. Inactivation of pathogenic microorganisms by photodynamic techniques: mechanistic aspects and perspective applications, anti-infect. Agents Med Chem 6: 119-131. Karunaratne V, Wickramasinghe A, Herath A, Amarasinghe P, Karunaratne S, Rajapakse G. 2005. Phototoxic effect of some porphyrin derivatives against the larvae of Aedes aegypti, a major vector of dengue fever. Current Science 89: 170-173. Lamola AA, Yamane T, Trozzolo AM. 1973. Cholesterol hydroperoxide formation in red cell membranes and photohemolysis in erythropoietic protoporphyria. Sci 179: 1131-1133. Lima AR, Silva CM, Caires CSA, Prado ED, Rocha LRP, Cabrini I, Arruda EJ, Oliveira SL, Caires ARL. 2018. Evaluation of eosin-methylene blue as a photosensitizer for larval control of Aedes aegypti by a photodynamic process. Insects 9: 109. Liu X, Williams CE, Nemacheck JA, Wang H, Subramanyam S, Zheng C, Chen MS. 2010. Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 152: 985-999. Lucantoni L, Magaraggia M, Lupidi G, Ouedraogo RK, Coppellotti O, Esposito F, Fabris C, Jori G, Habluetzel A. 2011. Novel, meso-substituted cationic porphyrin molecule for photo-mediated larval control of the dengue vector Aedes aegypti. PLoS Negl Trop Dis. 5: e1434. Mangan RL, Moreno DS. 2001. Photoactive dye insecticide formulations: adjuvants increase toxicity to Mexican fruit fly (Diptera: Tephritidae). J Econ Entomol 94: 150-156. Martinez De Pinillos Bayona A, Morz P, Thunshelle C, Hamblin MR. 2017. Design features for optimization tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers. Chem Biol Drug Des 89: 192-206. Nagata S. 2000. Apoptotic DNA fragmentation. Exp Cell Res 256: 12-18. Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S. 2011. Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49: 219-248. Naveen NC, Chaubey R, Kumar D, Rebijith KB, Rajagopal R, Subrahmanyam B, Subramanian S. 2017. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Sci Rep 7:40634. Rebeiz CA, Nandihalli UB, Reddy KN. 1991. Tetrapyrrole dependent photodynamic herbicides and chlorophyll biosynthesis modulators. In: Baker NR, Percival MB, Herbicides. Elsevier Amsterdam: 173-208. Richter PR, Strauch SM, Azizullah A, Häder DP. 2014. Chlorophyllin as a possible measure against vectors of human parasites and fish parasites. Front Environ Sci 18: 1-6. Shiao SH, Weng SC, Luan L, Vicente MDGH, Jiang XJ, Ng DKP, Kolli BK, Chang KP. 2019. Novel phthalocyanines activated by dim light for mosquito larva- and cell-inactivation with inference for their potential as broad-spectrum photodynamic insecticides. PLoS One 14: e0217355. Song R, Feng Y, Wang D, Xu Z, Li Z, Shao X. 2017. Phytoalexin phenalenone derivatives inactivate mosquito larvae and root-knot nematode as type-II photosensitizer. Sci Rep 7: 42058. Spikes JD, Livingston R. 1969. Molecular biology of photodynamic action: sensitized photoautooxidation in biological system. Adv Radial Biol 3: 29-121. Takashi I, 1978. Cellular and subcellular mechanisms of photodynamic action the 1O2 hypothesis as a driving force in recent research. Photochem Photobiol. 28: 493-508. Venturini FP, de Souza LM, Garbuio M, et al. 2020.Environmental safety and mode of action of a novel curcumin-based photolarvicide. Environ Sci Pollut Res 27: 29204-29217. Vincent K. 2008. Probit analysis. San Francisco: San Francisco State University. http://userwww.sfsu.edu/~efc/ classes/ biol710/probit/ProbitAnalysis.pdf. Weaver JE. 1987. Physiological effects of photodynamic action: special reference to insects. In: Heitz JR, Downum KR, editors. Light activated pesticides. Washington DC: ACS Symp Series 339: 122-133. Weng SH, Tsai WS, Kenyon L and Tsai CW. 2015. Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields in Taiwan. Ann Appl Biol 166: 321-330. Wohllebe S, Richter R, Richter P, Häder DP. 2000009. Photodynamic control of human pathogenic parasites in aquatic ecosystems using chlorophyllin and pheophorbid as photodynamic substances. Parasitol Res 104 :593-600. Wohllebe S, Ulbrich C, Grimm D, Pietsch J, Erzinger G, Richter R, Lebert M, Richter PR, Häder DP. 2011. Photodynamic treatment of Chaoborus crystallinus larvae with chlorophyllin induces necrosis and apoptosis. Photochem Photobiol 87: 1113-1122. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79596 | - |
| dc.description.abstract | 光敏劑 (Photosensitizer) 作為殺蟲劑來防治害蟲已經數十年。當光敏劑於適當波長的光照激發後,透過能量轉移產生具細胞毒性的單態氧 (singlet oxygen) 及含氧自由基 (free radicals) 導致昆蟲腸道細胞死亡,最終達到殺死害蟲的目的。本研究測試六種光敏劑 (Rose Bengal、 Cyanosine、TMAP、TPPS2、PC1與PC3.4) 對粉蝨的光活化致死效果並確認其殺蟲機制。菸草粉蝨於含有光敏劑的人工飼料於黑暗環境中取食16小時,之後照光48小時。結果發現光敏劑造成粉蝨的光活化效果,與光敏劑濃度及光照時間呈正比。當光敏劑濃度為5 μM時,除PC1和PC3.4以外其它四種藥劑在光照24小時後致死率達100%。亞致死劑量中0.1 μM的光敏劑既不會造成粉蝨的死亡,也不會影響粉蝨的生育。實驗證明當光敏劑被粉蝨取食後,會被腸道細胞吸收,並在光照以後產生活性氧分子並對粉蝨產生致死效果。TUNEL檢測證明光活化作用會導致粉蝨腸道內細胞死亡,最終導致粉蝨死亡。綜論上述結果檢測Rose Bengal、 Cyanosine及TMAP三種光敏試劑具有作為替代性殺蟲劑的潛力。這或許可以協助我們發展新穎的害蟲防治策略,保護農作物免於粉蝨的危害。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:04:45Z (GMT). No. of bitstreams: 1 U0001-1409202113284300.pdf: 1772603 bytes, checksum: 9a1d297385674a84d9ae650f7752dc7f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 I ABSTRACT II 1. INTRODUCTION 1 2. MATERIALS AND METHODS 4 2.1 Insects 4 2.2 Photosensitizers 4 2.3 Ingestion rate 5 2.4 Effect of photosensitizer on whitefly survival 5 2.5 Effect of photosensitizer on whitefly fecundity 6 2.6 Absorption of photosensitizer by the midgut cells of whitefly 7 2.7 Measurement of ROS generation 7 2.8 TUNEL assay 8 2.9 Statistical analyses 9 3. RESULTS 10 3.1 Ingestion rate of photosensitizers 10 3.2 Effect of photosensitizers on whitefly mortality 10 3.3 Effect of photosensitizers on whitefly fecundity 13 3.4 Absorption of photosensitizers by the midgut cells of whitefly 13 3.5 ROS generation 14 3.6 TUNEL assay 14 4. Discussion 15 REFERENCES 19 | |
| dc.language.iso | en | |
| dc.title | 光敏劑對菸草粉蝨 (Bemisia tabaci) 之光活化致死效果及作用機制 | zh_TW |
| dc.title | Light-activated lethal effect and mechanism of photosensitizers on Bemisia tabaci | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊永裕(Hsin-Tsai Liu),乃育昕(Chih-Yang Tseng),呂曉鈴 | |
| dc.subject.keyword | 殺蟲劑,光敏劑,活性氧 (reactive oxygen species),粉蝨, | zh_TW |
| dc.subject.keyword | insecticide,photosensitizer,reactive oxygen species,whitefly, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU202103165 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-09-30 | - |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1409202113284300.pdf | 1.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
