請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79594完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭克聲(Ke-Sheng Cheng) | |
| dc.contributor.author | Ho-Chia Chang | en |
| dc.contributor.author | 張和家 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:04:41Z | - |
| dc.date.available | 2021-09-17 | |
| dc.date.available | 2022-11-23T09:04:41Z | - |
| dc.date.copyright | 2021-09-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-15 | |
| dc.identifier.citation | Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov F. Csaki (Eds.), Proceedings of the 2nd international symposium on information theory (pp. 267–281). Akadémiai Kiadó. Blomqvist, N. (1950). On a measure of dependence between two random variables. The Annals of Mathematical Statistics, 21(4), 539–600. https://doi.org/10.1214/aoms/1177729754 Chang, J., Li, Y., Wang, Y., Yuan, M. (2016). Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. Journal of Hydrology, 540, 824–834. https://doi.org/10.1016/j.jhydrol.2016.06.064 Cherubini, U., Gobbi, F., Mulinacci, S. (2016). Convolution copula econometrics (1st ed.). Springer. https://doi.org/10.1007/978-3-319-48015-2 Cooley, D. (2013). Return periods and return levels under climate change. In A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert, S. Sorooshian (Eds.), Extremes in a changing climate: Detection, analysis and uncertainty (pp. 97–114). Springer. https://doi.org/10.1007/978-94-007-4479-0_4 Edwards, H. H., Taylor, M. D. (2009). Characterizations of degree one bivariate measures of concordance. Journal of Multivariate Analysis, 100(8), 1777–1791. https://doi.org/10.1016/j.jmva.2009.02.003 Fan, Y., Pastorello, S., Renault, E. (2015). Maximization by parts in extremum estimation. The Econometrics Journal, 18(2), 147–171. https://doi.org/10.1111/ectj.12046 Fan, Y. R., Huang, W. W., Huang, G. H., Huang, K., Li, Y. P., Kong, X. M. (2016). Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area, China. Theoretical and Applied Climatology, 125, 381–397. https://doi.org/10.1007/s00704-015-1505-z Favre, A.-C., El Adlouni, S., Perreault, L., Thiémonge, N., Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40(1). https://doi.org/10.1029/2003WR002456 Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Annals de l’Université de Lyon, Sciences, 14, 53–77. Fuchs, S. (2016). Copula-induced measures of concordance. Dependence Modeling, 4(1), 205–214. https://doi.org/10.1515/demo-2016-0011 Gail, M. H., Green, S. B. (1976). Critical values for the one-sided two-sample Kolmogorov-Smirnov statistic. Journal of the American Statistical Association, 71(355), 757–760. https://doi.org/10.1080/01621459.1976.10481562 Gumbel, E. J. (1941). The return period of flood flows. The Annals of Mathematical Statistics, 12(2), 163–190. Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3-4), 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009 Henny, L., Thorncroft, C. D., Hsu, H.-H., Bosart, L. F. (2021). Extreme rainfall in Taiwan: Seasonal statistics and trends. Journal of Climate, 34(12), 4711–4731. https://doi.org/10.1175/JCLI-D-20-0999.1 Hua, L., Joe, H. (2011). Tail order and intermediate tail dependence of multivariate copulas. Journal of Multivariate Analysis, 102(10), 1454–1471. https://doi.org/10.1016/j.jmva.2011.05.011 Joe, H. (2014). Dependence modeling with copulas (1st ed.). Chapman Hall. https://doi.org/10.1201/b17116 Joe, H., Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models. https://doi.org/10.14288/1.0225985 Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93. https://doi.org/10.2307/2332226 Kendall, M. G. (1948). Rank correlation methods. Griffin. Li, Z., Shao, Q., Tian, Q., Zhang, L. (2020). Copula-based drought severity-area-frequency curve and its uncertainty, a case study of Heihe River basin, China. Hydrology Research, 51(5), 867–881. https://doi.org/10.2166/nh.2020.173 Liu, Y., Luger, R. (2009). Efficient estimation of copula-GARCH models. Computational Statistics Data Analysis, 53(6), 2284–2297. https://doi.org/10.1016/j.csda.2008.01.018 Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259. https://doi.org/10.2307/1907187 Nelson, R. B. (2006). An introduction to copulas (2nd ed.). Springer. https://doi.org/10.1007/0-387-28678-0 Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(2), 126–135. https://doi.org/10.2307/2346729 Poulin, A., Huard, D., Favre, A.-C., Pugin, S. (2007). Importance of tail dependence in bivariate frequency analysis. Journal of Hydrologic Engineering, 12(4), 394–403. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(394) Rootzén, H., Katz, R. W. (2013). Design Life Level: Quantifying risk in a changing climate. Water Resources Research, 49(9), 5964–5972. https://doi.org/10.1002/wrcr.20425 Salas, J. D., Delleur, J. W., Yevjevich, V., Lane, W. L. (1980). Applied modeling of hydrologic time series. Water Resources Publications. Sang, Y.-F., Wang, Z., Liu, C. (2014). Comparison of the MK test and EMD method for trend identification in hydrological time series. Journal of Hydrology, 510(14), 293–298. https://doi.org/10.1016/j.jhydrol.2013.12.039 Sarabia, J. M., Gómez-Déniz, E. (2008). Construction of multivariate distributions: A review of some recent results. SORT, 32(1), 3–36. Scarsini, M. (1984). On measures of concordance. Stochastica, 8(3), 201–218. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136 Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934 Serfling, R. J. (1980). Approximation theorems of mathematical statistics. John Wiley Sons. https://doi.org/10.1002/9780470316481 Serinaldi, F. (2015). Dismissing return periods! Stochastic Environmental Research and Risk Assessment, 29(4), 1179–1189. https://doi.org/10.1007/s00477-014-0916-1 Sklar, A. (1959). Fonctions de réparition à n dimensions et leurs marges. Publications de l’Institute de Statistique de l’Universite de Paris, 8, 229–231. Sklar, A. (1996). Random variables, distribution functions, and copulas—a personal look backward and forward. Institute of Mathematical Statistics Lecture Notes - Monograph Series, 28, 1–14. https://doi.org/10.1214/lnms/1215452606 Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101. https://doi.org/10.2307/1412159 Volpi, E., Fiori, A., Grimaldi, S., Lombardo, F., Koutsoyiannis, D. (2015). One hundred years of return period: Strengths and limitations. Water Resources Research, 51(10), 8570–8585. https://doi.org/10.1002/2015WR017820 Xu, P., Wang, D., Singh, V. P., Lu, H., Wang, Y., Wu, J., Wang, L., Liu, J., Zhang, J. (2020). Copula-based seasonal rainfall simulation considering nonstationarity. Journal of Hydrology, 590, 125439. https://doi.org/10.1016/j.jhydrol.2020.125439 Yeh, C.-F., Wang, J., Yeh, H.-F., Lee, C.-H. (2015). Spatial and temporal streamflow trends in northern Taiwan. Water, 7(2), 634–651. https://doi.org/10.3390/w7020634 Yue, S., Pilon, P., Phinney, B., Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16(9), 1807–1829. https://doi.org/10.1002/hyp.1095 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79594 | - |
| dc.description.abstract | 氣候變遷對台灣造成多方面的衝擊,包括潛在降雨特性的改變導致更頻繁且嚴重的洪水或乾旱衝擊。Pettitt 檢定和 Mann-Kendall (MK) 檢定分別用以評估變遷點以及趨勢成分的量級。因此,Pettitt 檢定被視為變遷偵測的方法,而 MK 檢定被視為趨勢偵測的方法。然而,如果忽略針對時間序列相關性的處理,會導致 MK 檢定做出錯誤的結論。本文考慮強加線性趨勢於平穩一階自我迴歸模型的時間序列,提出可以控制型一誤差並且提高檢定力的修正趨勢移除—前置白化方法進行 MK 檢定。研究是否潛在氣候變遷於設計延時1、2、3、6、12、24與48小時的年最大降雨量序列以及鋒面雨、對流雨、颱風與梅雨事件所構成的事件最大降雨量序列。顯著趨勢經常存在於年最大降雨量序列,但極少存在於事件最大降雨量序列。根據超過百年紀錄的資料,於1947年以前,台中、台南、恆春、台東與花蓮各站設計延時1、2、3小時的年最大降雨量序列相同,揭露台灣中央氣象局可能曾更新雨量計設備。在1960至2020年間,台灣北部和南部在不同的設計延時的年最大降雨量序列顯示顯著遞增的趨勢。對流雨事件最大降雨量序列顯示顯著遞增的趨勢,且1940前後為變遷點。此外本文介紹基於關聯耦合的水文頻率分析,聚焦在 Kendall’s tau 和常態分數的相關性 (correlation of normal scores) 兩種和諧性測度 (concordance measure)。為了在相同的基準下比較候選關聯耦合族的相依結構,Kendall’s tau 在隨機抽樣的過程是固定的。透過模擬驗證和諧性測度確實反應相依結構的特性。應用推論邊緣函數法 (inference functions for margins method) 解聯合機率密度函數的參數及應用赤池訊息量準則 (AIC) 和貝葉斯信息量準則 (BIC) 進行模型挑選。針對颱風事件進行基於關聯耦合的水文頻率分析,颱洪災害事件可由最配適的存活關聯耦合的超越機率曲線求解,並利用設計生命週期的概念解釋颱洪災害事件。最終,發現台灣各區域具備相異的颱風事件特性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:04:41Z (GMT). No. of bitstreams: 1 U0001-1409202114494200.pdf: 9766603 bytes, checksum: 3d2aca15c69950e516aa2b0342a7ede4 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Table of Contents 口試委員會審定書 # Abstract i 摘要 iii Table of Contents iv List of Tables v List of Figures vi 1 Introduction 1 2 Literature Review 3 3 Material and Methods 7 3.1 Hourly Rainfall Data and Typhoon Database 7 3.2 Pettitt Test 9 3.3 Mann–Kendall Test 11 3.3.1 Test statistics and the estimators 11 3.3.2 Proposed processes for the Mann–Kendall test 14 3.4 Dependence Modeling with Copulas 16 3.4.1 Measures of concordance and tail dependence 18 3.4.2 Random sampling 20 3.4.3 Copula families 21 3.4.4 Inference 25 3.4.5 Applications 27 4 Results and Discussion 28 4.1 Bernoulli Random Variables for Pettitt Test 28 4.2 Factors Influencing the Mann–Kendall test 29 4.3 Detection of Climate Change on Maximum Rainfall Series 56 4.3.1 Annual maximum rainfall 56 4.3.2 Event maximum rainfall 60 4.4 Properties of Copulas 66 4.5 Copula-based Frequency Analysis 79 5 Conclusions 87 References 90 | |
| dc.language.iso | en | |
| dc.title | 降雨量趨勢偵測與關聯耦合應用於水文頻率分析 | zh_TW |
| dc.title | Rainfall Trend Detection and Copula-Based Hydrological Frequency Analysis | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃文政(Hsin-Tsai Liu),溫在弘(Chih-Yang Tseng),胡明哲 | |
| dc.subject.keyword | 變遷偵測,趨勢偵測,關聯耦合,設計生命水平,水文頻率分析, | zh_TW |
| dc.subject.keyword | Change detection,Trend detection,Copula,Design life level,Hydrological frequency analysis, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202103169 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-16 | |
| dc.contributor.author-dept | 共同教育中心 | zh_TW |
| dc.contributor.author-dept | 統計碩士學位學程 | zh_TW |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1409202114494200.pdf | 9.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
