請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79567完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許少瑜(Shao-Yiu Hsu) | |
| dc.contributor.author | Yu-Hao Su | en |
| dc.contributor.author | 蘇昱豪 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:03:54Z | - |
| dc.date.available | 2021-11-06 | |
| dc.date.available | 2022-11-23T09:03:54Z | - |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-29 | |
| dc.identifier.citation | Alzubi, J., Nayyar, A., Kumar, A. (2018). Machine learning from theory to algorithms: an overview. Paper presented at the Journal of physics: conference series. Archie, G. E. J. T. o. t. A. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. 146(01), 54-62. Baishiki, R. S., Osterberg, C. K., Dawalibi, F. J. I. t. o. p. d. (1987). Earth resistivity measurements using cylindrical electrodes at short spacings. 2(1), 64-71. Barker, R. J. G. (1989). Depth of investigation of collinear symmetrical four-electrode arrays. 54(8), 1031-1037. Chrétien, M., Lataste, J. F., Fabre, R., Denis, A. (2014). Electrical resistivity tomography to understand clay behavior during seasonal water content variations. Engineering Geology, 169, 112-123. doi:10.1016/j.enggeo.2013.11.019 Dey, A., Morrison, H. J. G. P. (1979). Resistivity modelling for arbitrarily shaped two‐dimensional structures. 27(1), 106-136. Edwards, L. J. G. (1977). A modified pseudosection for resistivity and IP. 42(5), 1020-1036. Fukue, M., Minato, T., Horibe, H., Taya, N. J. E. g. (1999). The micro-structures of clay given by resistivity measurements. 54(1-2), 43-53. Gjørv, O. E., Vennesland, Ø. E., El-Busaidy, A. (1977). Electrical resistivity of concrete in the oceans. Paper presented at the Offshore technology conference. Hallof, P. G. J. G. T., Metallogeny. (1982). Reconnaissance and detailed geophysical results, Granite Mountain area, Pershing County, Nevada. 374-401. Hong, Chong, Cho. (2019). Theoretical Study on Geometries of Electrodes in Laboratory Electrical Resistivity Measurement. Applied Sciences, 9(19). doi:10.3390/app9194167 Hubbert, M. K. J. T. J. o. G. (1940). The theory of ground-water motion. 48(8, Part 1), 785-944. Inman, J. R. J. G. (1975). Resistivity inversion with ridge regression. 40(5), 798-817. Lee, S. J., Yoon, H. K. (2021). Discontinuity Predictions of Porosity and Hydraulic Conductivity Based on Electrical Resistivity in Slopes through Deep Learning Algorithms. Sensors (Basel), 21(4). doi:10.3390/s21041412 Liu, B., Guo, Q., Li, S., Liu, B., Ren, Y., Pang, Y., . . . Jiang, P. (2020). Deep Learning Inversion of Electrical Resistivity Data. IEEE Transactions on Geoscience and Remote Sensing, 58(8), 5715-5728. doi:10.1109/tgrs.2020.2969040 Loke, M. H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys. In. McCarter, W. J. G. (1984). The electrical resistivity characteristics of compacted clays. 34(2), 263-267. McGILLIVRAY, P. R., Oldenburg, D. J. G. p. (1990). METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY 1. 38(5), 499-524. Merrick, N. J. E. G. (1997). A new resolution index for resistivity electrode arrays. 28(2), 106-109. Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5). doi:10.1029/2002wr001581 Michot, D., Dorigny, A., Benderitter, Y. J. C. R. d. l. A. d. S.-S. I.-E., Science, P. (2001). Mise en evidence par resistivité electrique des ecoulements préférentiels et de l'assèchement par le maıs d'un calcisol de Beauce irrigué. 332(1), 29-36. Mohri, M., Rostamizadeh, A., Talwalkar, A. (2018). Foundations of machine learning: MIT press. Park, J., Lee, K.-H., Seo, H., Ryu, J., Lee, I.-M. J. J. o. A. G. (2017). Role of induced electrical polarization to identify soft ground/fractured rock conditions. 137, 63-72. Reynolds, J. M. (2011). An introduction to applied and environmental geophysics: John Wiley Sons. Roy, A., Apparao, A. J. G. (1971). Depth of investigation in direct current methods. 36(5), 943-959. Scollar, I., Tabbagh, A., Hesse, A., Herzog, I. (1990). Archaeological prospecting and remote sensing. Shah, P. H., Singh, D. J. J. o. A. I. (2005). Generalized Archie's law for estimation of soil electrical conductivity. 2(5), 1-20. Shahriari, M., Pardo, D., Picon, A., Galdran, A., Del Ser, J., Torres-Verdín, C. (2020). A deep learning approach to the inversion of borehole resistivity measurements. Computational Geosciences, 24(3), 971-994. doi:10.1007/s10596-019-09859-y Silvester, P. P., Ferrari, R. L. (1996). Finite elements for electrical engineers: Cambridge university press. Šumanovac, F., Dominković Alavanja, S. J. R.-g.-n. z. (2007). Determination of resolution limits of electrical tomography on the block model in a homogenous environment by means of electrical modelling. 19(1), 47-56. Tagg, G. F. J. G. N. L. (1964). Earth resistance. Taiwo, S. M., Lee, J.-S., Yoon, H.-K. J. G. (2017). Analytical and experimental studies to obtain electrical resistivity in a small-scaled laboratory test. 82(5), E267-E275. Telford, W. M., Telford, W., Geldart, L., Sheriff, R. E., Sheriff, R. E. (1990). Applied geophysics: Cambridge university press. Topp, G. C., Davis, J. L., Annan, A. P. (1980). Electromagnetic Determination of Soil-Water Content - Measurements in Coaxial Transmission-Lines. Water Resources Research, 16(3), 574-582. doi:DOI 10.1029/WR016i003p00574 Vanella, D., Cassiani, G., Busato, L., Boaga, J., Barbagallo, S., Binley, A., Consoli, S. (2018). Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation. Journal of Hydrology, 556, 310-324. doi:10.1016/j.jhydrol.2017.11.025 Wenner, F. J. J. o. t. W. A. o. S. (1912). The four-terminal conductor and the Thomson bridge. 2(3), 63-65. 李榮棟. (2021). 利用大型入滲儀觀測動態土壤水力特性:動態毛細壓力、流速與舊水響應波速. doi:10.6342/NTU202100752 林宏彥. (2019). 利用實驗與數值方法研究河川底床阻水層對入滲率及非飽和區域發展的影響. doi:10.6342/NTU201900641 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79567 | - |
| dc.description.abstract | 地電阻影像探測法(Electrical Resistivity Tomography)是一種非侵入式的技術,可用來量測地層下電阻率,以及土壤含水量的變化。然而地下水的結構物,例如:入滲池(lysimeter),不透水混凝土邊界,會影響量測的電阻率。因此本研究藉由COMSOL Mutiphysics數值模擬軟體釐清不導電邊界對於量測電阻率影響的程度,並利用有限差分(finite difference)數值方法為基礎的三維反演方法及深度學習的隨機森林法,修正受邊界效應影響的電阻率資料,並比較兩種方法的修正結果。 COMSOL Mutiphysics模擬結果顯示,不導電邊界的存在,會造成量測的視電阻率增加,此效應稱為邊界效應(boundary effect)。邊界效應的影響程度與測線長及視電阻率剖面深度成正比關係,但與不導電邊界的距離成反比關係。 有限差分和隨機森林兩種方法均可有效的減少邊界效應的影響。本研究進一步分析和建構入滲池降雨實驗中,土壤電阻率和體積含水量的關係,並使用隨機森林修正受邊界效應影響的電阻率。修正前電阻率以及體積含水量關係曲線會隨著深度不同而有所差異,修正後的關係曲線則在深度上的差異有所減少。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:03:54Z (GMT). No. of bitstreams: 1 U0001-1809202118123600.pdf: 11425139 bytes, checksum: ea4071604ba3af13026013e91a684bdc (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 # 誌謝 i 中文摘要 i ABSTRACT ii CONTENTS目錄 iii LIST OF FIGURES vi LIST OF TABLE x 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的與目標 8 1.3 研究流程 8 第2章 原理及方法 12 2.1 地電阻測勘原理 12 2.2 地電阻反演理論(Inverse theory) 19 2.3 地電阻電極排列方式 22 2.4 地電阻資料處理 27 2.5 電阻與土壤含水量 29 2.6 入滲池降雨實驗 31 2.6.1 川砂 33 2.6.2 時域反射儀(Time Domain Reflectometry, TDR) 34 第3章 模擬邊界效應之模式原理及方法 35 3.1 COMSOL Mutiphysics 35 3.1.1 COMSOL Mutiphysics介紹 35 3.1.2 地電阻邊界效應模擬 36 3.1.3 地電阻邊界效應模擬方法 39 3.2 地電阻三維有限差分及反演模式 45 3.2.1 有限差分介紹 45 3.2.2 地電阻三維有限差分模擬 46 3.2.3 地電阻三維反演模式 50 3.3 隨機森林模式 54 3.3.1 隨機森林介紹 54 3.3.2 隨機森林模式 57 第4章 結果與討論 58 4.1 邊界效應模擬 58 4.1.1 邊界效應與混凝土飽和度之關係 58 4.1.2 邊界效應與測線距離不導電邊界長度及測線長之關係 59 4.1.3 邊界效應與視電阻率剖面深度之關係 63 4.1.4 邊界效應與土壤電阻率之關係 66 4.2 三維反演及隨機森林模式分析 68 4.2.1 三維有限差分法網格收斂性 68 4.2.2 三維有限差分反演的敏感度分析 70 4.2.3 垂向地層變化之反演結果 74 4.2.4 水平地層變化之反演結果 76 4.2.5 隨機森林模式分析 78 4.3 三維反演及隨機森林修正邊界效應 80 4.3.1 修正不同測線與不導電邊界距離之邊界效應 81 4.3.2 非均質地層修正邊界效應 91 4.4 隨機森林修正降雨實驗中地電阻的邊界效應 102 第5章 結論與建議 112 5.1 結論 112 5.2 建議 113 Reference 114 Appendix A地電阻三維有限差分Matlab程式碼 118 Appendix B地電阻反演Matlab程式碼 122" | |
| dc.language.iso | zh-TW | |
| dc.title | 探討入滲池內高電阻率邊界對於地電阻量測與土壤含水量推估之影響 | zh_TW |
| dc.title | Effects of the high resistivity boundary on the measurement of soil electrical resistivity and water content in a lysimeter | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡明哲(Hsin-Tsai Liu),邱永嘉(Chih-Yang Tseng),陳建志 | |
| dc.subject.keyword | 地電阻,邊界效應,有限差分,反演,隨機森林, | zh_TW |
| dc.subject.keyword | Electrical Resistivity Tomography,boundary-effect,Finite difference method,inversion,random forest, | en |
| dc.relation.page | 122 | |
| dc.identifier.doi | 10.6342/NTU202103244 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1809202118123600.pdf | 11.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
