請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79564完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志軒(Chih-Hsuan Chen) | |
| dc.contributor.author | Chih-Shan Chang | en |
| dc.contributor.author | 張至善 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:03:49Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-23T09:03:49Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-23 | |
| dc.identifier.citation | [1] 李芝媛、吳錫侃, 科儀新知第十六卷 6 (1995) 6. [2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv Eng Mater 6(5) (2004) 299-303. [3] F. G.S, T.A.Kosorukova,Y.N.Koval,V.V.Odnosum, Materials Today:Proceedings 2 (2015) S499-S504. [4] F. G.S, T.A.Kosorukova,Y.N.Koval,A.Verhovlyuk, Directions for High-Temperature Shape Memory Alloys' Improvement:Straight Way to High-Entropy Materials?, Shap.Mem.Superelasticity 1 (2015) 400. [5] H.-C. Lee, Y.-J. Chen, C.-H. Chen, Effect of solution treatment on the shape memory functions of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Entropy 21(10) (2019) 1027. [6] C.-H. Chen, Y.-J. Chen, Shape memory characteristics of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Scripta Materialia 162 (2019) 185-189. [7] W. Kim, Y. Kim, J. Kim, Y. Kim, M. Na, W. Kim, D.H. Kim, Correlation between the thermal and superelastic behavior of Ni50-xTi35Zr15Cux shape memory alloys, Intermetallics 107 (2019) 24-33. [8] A. Ölander, An electrochemical investigation of solid cadmium-gold alloys, Journal of the American Chemical Society 54(10) (1932) 3819-3833. [9] L.B. Vernon, H.M. Vernon, Process of manufacturing articles of thermoplastic synthetic resins, Google Patents, 1941. [10] L.C. Chang, T.A. Read, Plastic Deformation and Diffusionless Phase Changes in Metals - the Gold-Cadmium Beta-Phase, T Am I Min Met Eng 191(1) (1951) 47-52. [11] G.B. Kauffman, I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, The chemical educator 2(2) (1997) 1-21. [12] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials Design (1980-2015) 56 (2014) 1078-1113. [13] J. Van Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A 273 (1999) 134-148. [14] N. Morgan, Medical shape memory alloy applications—the market and its products, Materials Science and Engineering: A 378(1-2) (2004) 16-23. [15] M. Mehrpouya, H. Cheraghi Bidsorkhi, MEMS applications of NiTi based shape memory alloys: a review, Micro and Nanosystems 8(2) (2016) 79-91. [16] H. Kessler, W. Pitsch, On Nature of Martensite to Austenite Reverse Transformation, Acta Metall Mater 15(2) (1967) 401- . [17] K. Enami, A. Nagasawa, S. Nenno, Reversible Shape Memory Effect in Fe-Base Alloys, Scripta Metall Mater 9(9) (1975) 941-948. [18] A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, S. Nenno, Reversible Shape Memory Effect, Scripta Metall Mater 8(9) (1974) 1055-1060. [19] T. Saburi, S. Nenno, Reversible Shape Memory in Cu-Zn-Ga, Scripta Metall Mater 8(12) (1974) 1363-1367. [20] M. Nishida, T. Honma, Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni, Scripta Metall Mater 18(11) (1984) 1299-1302. [21] M. Nishida, C.M. Wayman, T. Honma, Electron-Microscopy Studies of the All-Round Shape Memory Effect in a Ti-51.0 Atmospheric-Percent Ni-Alloy, Scripta Metall Mater 18(12) (1984) 1389-1394. [22] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Crystal-Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at Percent-Ni Shape Memory Alloy, T Jpn I Met 27(10) (1986) 731-740. [23] T.Honma, Proc,Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin,China (1986) 709. [24] T.Honma, ICOMAT-86 (1986) 709. [25] K. Otsuka, K. Shimizu, Pseudoelasticity, Met Forum 4(3) (1981) 142-152. [26] C.M.W. K.Otsuka, in: Reviews on the Deformation Behavior of Materials, (1977). [27] C.M.W. K.Otsuka, in: Proc. Int. Conf. On Solid to Solid Phase Transformations,, TMS-AIME Pittsburgh,Pa.(USA) (1981). [28] K. Otsuka, X.B. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528. [29] H.O. T.B. Massalski, P.R. Subramanian, L. Kacprzak. Editors. , Binary Alloys Phase Diagrams, ASM International 3 (1990) 2875. [30] C.M.W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110, (1972). [31] K. Otsuka, T. Sawamura, K. Shimizu, Crystal Structure and Internal Defects of Equiatomic Tini Martensite, Phys Status Solidi A 5(2) (1971) 457- . [32] K.M. Knowles, D.A. Smith, The Crystallography of the Martensitic-Transformation in Equiatomic Nickel-Titanium, Acta Metall Mater 29(1) (1981) 101-110. [33] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Crystallography of Martensitic-Transformation in Ti-Ni Single-Crystals, Acta Metall Mater 35(8) (1987) 2137-2144. [34] M. Nishida, N. Ohgi, I. I, A. Chiba, K. Yamauchi, Electron-Microscopy Studies of Twin Morphologies in B19' Martensite in the Ti-Ni Shape-Memory Alloy, Acta Metallurgica Et Materialia 43(3) (1995) 1219-1227. [35] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Electron-Microscopy Study of Twins in Martensite in a Ti-50.0 at Percent Ni-Alloy, Mater T Jim 33(4) (1992) 354-359. [36] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation Behavior of a Ti50ni47fe3 Alloy .2. Subsequent Premartensitic Behavior and the Commensurate Phase, Philos Mag A 47(1) (1983) 31-62. [37] S.K. Wu, H.C. Lin, The Effect of Precipitation Hardening on the Ms Temperature in a Ti49.2ni50.8 Alloy, Scripta Metallurgica Et Materialia 25(7) (1991) 1529-1532. [38] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog Mater Sci 50(5) (2005) 511-678. [39] A.P. Thomas duerig, Christine Trpanier, Nitinol, SMST e-Elastic newsletter (2011). [40] H. Hosoda, S. Hanada, K. Inoue, T. Fukui, Y. Mishima, T. Suzuki, Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions, Intermetallics 6(4) (1998) 291-301. [41] H. Hosoda, T. Fukul, K. Inoue, Y. Mishima, T. Suzuki, Change of Ms Temperatures and its Correlation to Atomic Configurations of Offstoichiometric NiTi-Cr and NiTi-Co Alloys, MRS Online Proceedings Library (OPL) 459 (1996). [42] M. Piao, S. Miyazaki, K. Otsuka, N. Nishida, Effects of Nb addition on the microstructure of Ti–Ni alloys, Materials Transactions, JIM 33(4) (1992) 337-345. [43] Y. Kishi, Z. Yajima, K.i. Shimizu, Relation between tensile deformation behavior and microstructure in a Ti-Ni-Co shape memory alloy, Materials Transactions 43(5) (2002) 834-839. [44] S. Hsieh, S. Wu, Room-temperature phases observed in Ti53− xNi47Zrx high-temperature shape memory alloys, J Alloy Compd 266(1-2) (1998) 276-282. [45] Y. Suzuki, Y. Xu, S. Morito, K. Otsuka, K. Mitose, Effects of boron addition on microstructure and mechanical properties of Ti–Td–Ni high-temperature shape memory alloys, Materials Letters 36(1-4) (1998) 85-94. [46] X. Meng, W. Cai, F. Chen, L. Zhao, Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy, Scripta materialia 54(9) (2006) 1599-1604. [47] K.H.P. Wu, Z.; Tseng, H.K.; Biancaniello, F.S., Shape memory effect of the Ni-Ti-Hf high temperature shape memory alloy, (1995). [48] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .1. Compositional Dependence of 1/3 Reflections from the Matrix Phase, Metallography 15(3) (1982) 233-245. [49] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .2. Morphology and Crystal-Structure of Martensites, Metallography 15(3) (1982) 247-258. [50] T. Saburi, T. Komatsu, S. Nenno, Y. Watanabe, Electron-Microscope Observation of the Early Stages of Thermoelastic Martensitic-Transformation in a Ti-Ni-Cu Alloy, J Less-Common Met 118(2) (1986) 217-226. [51] T.H. Y Shugo, Two-Step Martensitic Transformation and Yield Strength in TiNi sub 0. 8 Cu sub 0. 2, Bull. Res. Inst. Miner. Dressing Metall. (1987). [52] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu, Shape Memory Characteristics Associated with the B2-Reversible-B19 and B19-Reversible-B19' Transformations in a Ti-40ni-10cu (at-Percent) Alloy, Mater T Jim 31(4) (1990) 262-269. [53] T.H. Nam, T. Saburi, Y. Nakata, K. Shimizu, Shape Memory Characteristics and Lattice Deformation in Ti-Ni-Cu Alloys, Mater T Jim 31(12) (1990) 1050-1056. [54] T.H. Nam, T. Saburi, K. Shimizu, Cu-Content Dependence of Shape Memory Characteristics in Ti-Ni-Cu Alloys, Mater T Jim 31(11) (1990) 959-967. [55] T.H. Nam, T. Saburi, K. Shimizu, Effect of Thermomechanical Treatment on Shape Memory Characteristics in a Ti-40ni-10cu (at Percent) Alloy, Mater T Jim 32(9) (1991) 814-820. [56] T.W.D.K.N.M.D. Stöckel, Engineering Aspects of Shape Memory Alloys, (1990) 21. [57] 林鎮川, 國立台灣大學材料科學與工程研究所碩士論文 (1991). [58] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mat Sci Eng a-Struct 378(1-2) (2004) 24-33. [59] S. Miyazaki, Y. Igo, K. Otsuka, Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys, Acta Metall Mater 34(10) (1986) 2045-2051. [60] Y. Nakata, T. Tadaki, K. Shimizu, Thermal Cycling Effects in a Cu-Al-Ni Shape Memory Alloy, T Jpn I Met 26(9) (1985) 646-652. [61] G.C. Wang, K.P. Hu, Y.X. Tong, B. Tian, F. Chen, L. Li, Y.F. Zheng, Z.Y. Gao, Influence of Nb content on martensitic transformation and mechanical properties of TiNiCuNb shape memory alloys, Intermetallics 72 (2016) 30-35. [62] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall Trans A 17(1) (1986) 115-120. [63] T. Tadaki, Y. Nakata, K. Shimizu, Thermal Cycling Effects in an Aged Ni-Rich Ti-Ni Shape Memory Alloy, T Jpn I Met 28(11) (1987) 883-890. [64] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z.Y. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat Mater 5(4) (2006) 286-290. [65] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, Springer (2015). [66] B.S.M.J.-W.Y.S. Ranganathan, High-entropy alloys, (2014 ). [67] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375 (2004) 213-218. [68] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153-1158. [69] O. Senkov, J. Scott, S. Senkova, D. Miracle, C. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J Alloy Compd 509(20) (2011) 6043-6048. [70] J.W. Yeh, Recent progress in high-entropy alloys, Ann Chim-Sci Mat 31(6) (2006) 633-648. [71] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv Eng Mater 10(6) (2008) 534-538. [72] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater Chem Phys 132(2-3) (2012) 233-238. [73] J.-W. Yeh, Physical metallurgy of high-entropy alloys, Jom-Us 67(10) (2015) 2254-2261. [74] X. Wang, W. Guo, Y. Fu, High-entropy alloys: emerging materials for advanced functional applications, Journal of Materials Chemistry A (2020). [75] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Current science 85(10) (2003) 1404-1406. [76] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 <= x <= 2) high-entropy alloys, J Alloy Compd 488(1) (2009) 57-64. [77] S.-H. Chang, P.-T. Lin, C.-W. Tsai, High-temperature martensitic transformation of CuNiHfTiZr high-entropy alloys, Scientific reports 9(1) (2019) 1-7. [78] C. Hinte, K. Barienti, J. Steinbrücker, J.-M. Hartmann, G. Gerstein, S. Herbst, D. Piorunek, J. Frenzel, A. Fantin, H.J. Maier, The effect of increasing chemical complexity on the mechanical and functional behavior of NiTi-related shape memory alloys, Shape Memory and Superelasticity 6 (2020) 181-190. [79] D. Canadinc, W. Trehern, J. Ma, I. Karaman, F. Sun, Z. Chaudhry, Ultra-high temperature multi-component shape memory alloys, Scripta Materialia 158 (2019) 83-87. [80] K. Otsuka, K. Shimizu, Pseudoelasticity and shape memory effects in alloys, International Metals Reviews 31(1) (1986) 93-114. [81] J. Nei, K.-H. Young, Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X= Ni, Cr, Mn, Fe, Co, or Cu) for nickel metal hydride battery applications, Batteries 2(3) (2016) 24. [82] L. Gou, Y. Liu, T.Y. Ng, Effect of Cu Content on Atomic Positions of Ti50Ni50− xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Metals 5(4) (2015) 2222-2235. [83] J. Frenzel, A. Wieczorek, I. Opahle, B. Maass, R. Drautz, G. Eggeler, On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys, Acta Mater 90 (2015) 213-231. [84] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-entropy alloys, Cham: Springer International Publishing (2016). [85] K.C. Atli, I. Karaman, R.D. Noebe, Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy, Mat Sci Eng a-Struct 613 (2014) 250-258. [86] 張晏庭, 未發表工作. [87] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater 122 (2017) 448-511. [88] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions 46(12) (2005) 2817-2829. [89] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater Sci Tech-Lond 31(10) (2015) 1223-1230. [90] S. Li, D. Cong, Z. Chen, S. Li, C. Song, Y. Cao, Z. Nie, Y. Wang, A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery, Materials Research Letters 9(6) (2021) 263-269. [91] M. Zarinejad, Y. Liu, Dependence of Transformation Temperatures of NiTi‐based Shape‐Memory Alloys on the Number and Concentration of Valence Electrons, Advanced Functional Materials 18(18) (2008) 2789-2794. [92] D. Piorunek, O. Oluwabi, J. Frenzel, A. Kostka, H. Maier, C. Somsen, G. Eggeler, Effect of off-stoichiometric compositions on microstructures and phase transformation behavior in Ni-Cu-Pd-Ti-Zr-Hf high entropy shape memory alloys, J Alloy Compd 857 (2021) 157467. [93] J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.-X. Wagner, G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater 58(9) (2010) 3444-3458. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79564 | - |
| dc.description.abstract | "本研究針對Ti35-xZr15HfxNi35-yCoyCu15 (x= 5, 10, 15; y= 5, 10)擬二元高熵形狀記憶合金之相變態溫度、顯微結構、晶體結構、形狀記憶效應、超彈性以及彈熱效應進行研究,並分別對爐冷試片與固溶試片進行探討。Ti35Zr15Ni35Cu15固溶試片添加Hf會使麻田散體相相變態溫度上升,Mp上升幅度為16.57°C /(at.% Hf);再添加Co會使麻田散體相相變態溫度下降,Mp下降幅度為-18.53°C/(at.% Hf)。這些結果顯示可透過調整合金元素比例以設計不同變態溫度與應用之高熵形狀記憶合金。所有試片經過固溶處理後皆為固溶體與(Ti,Zr,Hf)2(Ni,Cu)或(Ti,Zr,Hf)2(Ni,Co,Cu)析出物之組成,並且固溶處理後所有試片之相變態溫度皆往上升,這是由於部分(Ti,Zr,Hf)2(Ni,Cu)或(Ti,Zr,Hf)2(Ni,Co,Cu)溶解回基底,導致基底之Ti類含量往上升,也使得相變態溫度往上升。在XRD中觀察到,不管是爐冷試片或是固溶試片都有麻田散體或沃斯田體相變態殘留的行為,推斷是由於添加的元素較多造成晶格嚴重扭曲,使得部分麻田散體相或母相無法透過溫度來誘發相變態。形狀記憶效應測試顯示,固溶處理後由於部分脆性的(Ti,Zr,Hf)2(Ni,Cu)或(Ti,Zr,Hf)2(Ni,Co,Cu)溶解回基底,也使得試片可以承受的應力皆更高,並且在更高的應力下都沒有斷裂,也有更大的相變應變,試片之承受應力皆提升至500MPa以上,可回復應變提升至4.75%以上。超彈性測試下也可以看到經過固溶處理後,所有試片在不同應變下試片之可回復應變明顯上升,不可回復應變下降。在彈熱效應中觀察到,Hf5固溶試片之彈熱效應最大,在5%應變量時有最大的彈熱效應△T=-15.3°C,與其他固溶試片相比,接下來依序為Hf10、Co5與Co10,這個順序與超彈性之可回復應變量相符。研究結果顯示,固溶處理可提高高熵形狀記憶合金之性能。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:03:49Z (GMT). No. of bitstreams: 1 U0001-1909202117185200.pdf: 23228913 bytes, checksum: d30d1ef9882f68d2581da3c3f8e18de6 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "論文口試委員審定書 i 誌謝 iii 摘要 iv Abstract v 目錄 vii 第一章 前言 1 第二章 文獻回顧 3 2-1 形狀記憶合金簡介 3 2-2 形狀記憶特性 4 2-2-1熱彈型麻田散體相變態 4 2-2-2形狀記憶效應(Shape Memory Effect) 6 2-2-3超彈性(Superelaticity,SE) 7 2-2-4 彈熱效應簡介 9 2-3 TiNi基形狀記憶合金 9 2-4 不同合金元素影響 11 2-5 熱循環對合金之影響 12 2-6 高熵合金簡介 13 2-6-1高熵效應(High-entropy effect) 14 2-6-2緩慢擴散效應(Sluggish Diffusion Effect) 16 2-6-3晶格扭曲(Sever Lattice Distortion Effect) 16 2-6-4雞尾酒效應(Cocktail Effect) 16 2-7 高熵形狀記憶合金形成理論 17 2-7-1 TiNi基高熵形狀記憶合金 17 第三章 實驗方法 36 3-1 合金配置與熔煉 37 3-2 DSC量測 38 3-3 DMA量測 38 3-3-1三點彎曲測試原理 39 3-4 掃描式電子顯微鏡(SEM)觀察 40 3-5 X光繞射(XRD)分析 40 3-6 場發射電子微探儀(EPMA) 41 3-7 壓縮試驗 41 3-8 彈熱效應之溫度變化量測 41 3-9 硬度量測 41 第四章 爐冷Ti35-xZr15HfxNi35-yCoyCu15 (x= 5, 10, 15; y= 5, 10)之相變態溫度與形狀記憶性能 48 4-1 Hf5、Hf10、Hf15、Co5與Co10爐冷試片高熵性質比較 48 4-2 Hf5、Hf10、Hf15、Co5與Co10爐冷試片之變態溫度比較 49 4-3 Hf5、Hf10、Hf15、Co5與Co10爐冷試片顯微組織之觀察結果(SEM、EDS) 49 4-4 Hf5、Hf10、Hf15、Co5與Co10爐冷試片成分分布量測(EPMA) 50 4-5 Hf5、Hf10、Hf15、Co5與Co10爐冷試片之晶體結構量測(XRD) 51 4-6 Hf5、Hf10、Hf15、Co5與Co10爐冷試片合金硬度量測結果(Microvickers) 53 4-7 Hf5、Hf10、Hf15、Co5與Co10爐冷試片之形狀記憶效應量測(DMA) 53 4-8 Hf5、Hf10、Hf15、Co5與Co10爐冷試片超彈性與彈熱效應測試 55 第五章 固溶處理對Ti35-xZr15HfxNi35-yCoyCu15 (x= 5, 10, 15; y= 5, 10)之影響 91 5-1 固溶處理對變態溫度之影響(DSC) 91 5-2 固溶處理對顯微結構之影響(SEM、EDS與EPMA) 92 5-3 固溶處理對晶體結構之影響(XRD) 93 5-4 固溶處理對硬度之影響(Microvickers) 94 5-5 固溶處理對形狀記憶效應量測之影響(DMA) 95 5-6 固溶處理對超彈性與彈熱效應之影響 96 第六章 結論 133 參考文獻 135 " | |
| dc.language.iso | zh-TW | |
| dc.title | "Ti35-xZr15HfxNi35-yCoyCu15 (x= 5, 10, 15; y= 5, 10)擬二元高熵形狀記憶合金之麻田散體相變態行為與機械性質之研究 " | zh_TW |
| dc.title | "Research on Martensitic Transformation Behaviors and Mechanical Properties of Pseudobinary Ti35-xZr15HfxNi35-yCoyCu15 (x= 5, 10, 15; y= 5, 10) High Entropy Shape Memory Alloys " | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建彰(Hsin-Tsai Liu),陳俊杉(Chih-Yang Tseng) | |
| dc.subject.keyword | 高熵合金,形狀記憶合金,形狀記憶效應,麻田散體相變態,超彈性, | zh_TW |
| dc.subject.keyword | high entropy alloy,shape memory alloy,shape memory effect,martensitic transformation,pseudoelasticity, | en |
| dc.relation.page | 143 | |
| dc.identifier.doi | 10.6342/NTU202103250 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1909202117185200.pdf | 22.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
