Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79560
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志軒(Chih-Hsuan Chen)
dc.contributor.authorYu-Yung Tingen
dc.contributor.author丁宥允zh_TW
dc.date.accessioned2022-11-23T09:03:43Z-
dc.date.available2021-11-08
dc.date.available2022-11-23T09:03:43Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-23
dc.identifier.citation[1] K. Otsuka, X.J.P.i.m.s. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, 50(5) (2005) 511-678. [2] D. Cong, G. Saha, M.J.A.b. Barnett, Thermomechanical properties of Ni–Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing, 10(12) (2014) 5178-5192. [3] J.M. Jani, M. Leary, A. Subic, M.A.J.M. Gibson, Design, A review of shape memory alloy research, applications and opportunities, 56 (2014) 1078-1113. [4] C.J.T.O.M.D.J. Song, History and current situation of shape memory alloys devices for minimally invasive surgery, 2(1) (2010). [5] E. Kassab, L. Neelakantan, M. Frotscher, S. Swaminathan, B. Maaß, M. Rohwerder, J. Gomes, G.J.M. Eggeler, Corrosion, Effect of ternary element addition on the corrosion behaviour of Ni T i shape memory alloys, 65(1) (2014) 18-22. [6] S.-y. Jiang, Y.-n. Zhao, Y.-q. Zhang, H. Li, Y.-l.J.T.o.N.M.S.o.C. Liang, Effect of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi shape memory alloy, 23(12) (2013) 3658-3667. [7] B. Thierry, M. Tabrizian, C. Trepanier, O. Savadogo, L.H.J.J.o.b.m.r. Yahia, Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy, 51(4) (2000) 685-693. [8] T.H. Nam, T. Saburi, Y. Kawamura, K.i.J.M.T. Shimizu, JIM, Shape Memory Characteristics Associated with the B2\ightleftarrowsB19 and B19\ightleftarrowsB19′ Transformations in a Ti-40Ni-10Cu (at.%) Alloy, 31(4) (1990) 262-269. [9] T.H. Nam, T. Saburi, Y. Nakata, K.i.J.M.T. Shimizu, JIM, Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys, 31(12) (1990) 1050-1056. [10] T.H. Nam, T. Saburi, K.i.J.M.T. Shimizu, JIM, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys, 31(11) (1990) 959-967. [11] T.H. Nam, T. Saburi, K.i.J.M.T. Shimizu, JIM, Effect of thermo-mechanical treatment on shape memory characteristics in a Ti-40Ni-10Cu (at%) alloy, 32(9) (1991) 814-820. [12] Y. Furuya, M. Matsumoto, H. Kimura, T.J.M.S. Masumoto, E. A, Thermoelastic phase transformation of melt-spun Ti50Ni50− xCux (x= 0–20 at.%) ribbons, 147(1) (1991) L7-L11. [13] Y. Liu, Z. Xie, Y. Tong, C.J.J.o.a. Lim, compounds, Properties of rapidly annealed Ti50Ni25Cu25 melt-spun ribbon, 416(1-2) (2006) 188-193. [14] J. Morgiel, E. Cesari, J. Pons, A. Pasko, J.J.J.o.m.s. Dutkiewicz, Microstructure and martensite transformation in aged Ti-25Ni-25Cu shape memory melt spun ribbons, 37(24) (2002) 5319-5325. [15] T.-h. Nam, L. Jae-hwa, K. Ki-won, H.-j. Ahn, Y.-w.J.J.o.m.s. Kim, The B2-B19-B19’transformation in a rapidly solidified Ti-45Ni-5Cu (at%) alloy, 40(18) (2005) 4925-4927. [16] S.-H. Chang, S.-K. Wu, H.J.M.t. Kimura, Crystallization kinetics of Ti50Ni25Cu25 melt-spun amorphous ribbons, 47(10) (2006) 2489-2492. [17] A. Shelyakov, N. Sitnikov, A. Menushenkov, A. Korneev, R. Rizakhanov, N.J.J.o.A. Sokolova, Compounds, Fabrication and characterization of amorphous–crystalline TiNiCu melt-spun ribbons, 577 (2013) S251-S254. [18] J.-h. Lee, T.-h. Nam, H.-j. Ahn, Y.-w.J.M.S. Kim, E. A, Shape memory characteristics and superelasticity of Ti–45Ni–5Cu alloy ribbons, 438 (2006) 691-694. [19] T.-H. Nam, J.-H. Lee, J.-M. Nam, K.-W. Kim, G.-B. Cho, Y.-W.J.M.S. Kim, E. A, Microstructures and mechanical properties of Ti–45 at.% Ni–5 at.% Cu alloy ribbons containing Ti2Ni particles, 483 (2008) 460-463. [20] C. Bechtold, C. Chluba, R. Lima de Miranda, E.J.A.P.L. Quandt, High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films, 101(9) (2012) 091903. [21] M.M. Kheirikhah, S. Rabiee, M.E. Edalat, A review of shape memory alloy actuators in robotics, Robot soccer world cup, Springer, 2010, pp. 206-217. [22] G.B. Kauffman, I.J.T.c.e. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, 2(2) (1997) 1-21. [23] K.K. Alaneme, E.A.J.E.S. Okotete, a.I.J. Technology, Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems, 19(3) (2016) 1582-1592. [24] H. Kessler, W.J.A.M. Pitsch, On the nature of the martensite to austenite reverse transformation, 15(2) (1967) 401-405. [25] J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.-X. Wagner, G.J.A.M. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, 58(9) (2010) 3444-3458. [26] A. Evirgen, F. Basner, I. Karaman, R.D. Noebe, J. Pons, R.J.F.M.L. Santamarta, Effect of aging on the martensitic transformation characteristics of a Ni-rich NiTiHf high temperature shape memory alloy, 5(04) (2012) 1250038. [27] S. Miyazaki, Y. Igo, K.J.A.m. Otsuka, Effect of thermal cycling on the transformation temperatures of Ti Ni alloys, 34(10) (1986) 2045-2051. [28] K. Tsuchiya, M. Inuzuka, D. Tomus, A. Hosokawa, H. Nakayama, K. Morii, Y. Todaka, M.J.M.S. Umemoto, E. A, Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation, 438 (2006) 643-648. [29] D.N.J.M. Adnyana, Effect of grain size on transformation temperatures in a grain-refined, copper-based, shape-memory alloy, 19(2) (1986) 187-196. [30] G. Sure, L.J.M. Brown, M.T. A, The mechanical properties of grain refined β-cuaini strain-memory alloys, 15(8) (1984) 1613-1621. [31] 李芝媛、吳錫侃, 科儀新知第十六卷 6 (1995) 6. [32] T. Schroeder, C.J.A.M. Wayman, The formation of martensite and the mechanism of the shape memory effect in single crystals of Cu-Zn alloys, 25(12) (1977) 1375-1391. [33] K. Otsuka, Pseudoelasticity, (1981). [34] K. Otsuka, C. Wayman, P.J.F.e. Feltham, Freund, Israel, Reviews on the deformation behavior of materials, 2 (1977) 81. [35] C.M.W. K.Otsuka, in: Proc. Int. Conf. On Solid to Solid Phase Transformations,, TMS-AIME Pittsburgh,Pa.(USA) (1981). [36] K. Otsuka, K.J.I.M.R. Shimizu, Pseudoelasticity and shape memory effects in alloys, 31(1) (1986) 93-114. [37] K.J.E.a.o.s.m.a. Melton, Ni-Ti based shape memory alloys, 344 (1990) 21-25. [38] K. Melton, Deformation behavior of NiTi-based alloys, (1978). [39] T. Saburi, T. Komatsu, S. Nenno, Y. Watanabe, J. Less-Common. Met. 118, 217 (1986). [40] T. Saburi, Y. Watanabe, S.J.I.i. Nenno, Morphological characteristics of the orthorhombic martensite in a shape memory Ti–Ni–Cu alloy, 29(5) (1989) 405-411. [41] T.H. Nam, T. Saburi, K.i. Shimizu, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys, Materials Transactions, JIM 31(11) (1990) 959-967. [42] W. Moberly, J. Proft, T. Duerig, R. Sinclair, Twinless martensite in TiNiCu shape memory alloys, Materials Science Forum, Trans Tech Publ, 1990, pp. 605-610. [43] Y. Watanabe, T. Saburi, Y. Nakagawa, S. Nenno, Self-Accommodation Structure in the Ti--Ni--Cu Orthorhombic Martensite, Journal of the Japan Institute of Metals 54(8) (1990) 861-869. [44] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Electron microscopy study of twins in martensite in a Ti-50.0 at% Ni alloy, Materials Transactions, JIM 33(4) (1992) 354-359. [45] J.E. Flinn, Rapid solidification technology for reduced consumption of strategic materials, William Andrew1985. [46] Y.-W. Kim, T.-H. Nam, The effect of the melt spinning processing parameters on the martensitic transformation in Ti50–Ni35–Cu15 shape memory alloys, Scripta materialia 51(7) (2004) 653-657. [47] G.C. Anselmo, W.B. de Castro, C.J. de Araújo, Martensitic Characterization of the Ti45. 3Ni54. 7 Melt Spun Alloy, Materials Sciences and Applications 2(9) (2011) 1256-1259. [48] R. Nagarajan, K. Chattopadhyay, Intermetallic Ti2Ni/TiNi nanocomposite by rapid solidification, Acta metallurgica et materialia 42(3) (1994) 947-958. [49] H.Y. Xing, H.Y. Kim, S. Miyazaki, Effect of rotation speed on transformation behavior in Ti-48at% Ni shape memory alloy melt-spun ribbon, Materials Science Forum, Trans Tech Publ, 2007, pp. 1481-1484. [50] P. Donner, S. Eucken, The shape memory effect in meltspun ribbons, Materials Science Forum, Trans Tech Publ, 1990, pp. 723-728. [51] Y. Furuya, M. Matsumoto, H. Kimura, K. Aoki, T. Masumoto, Thermo-mechanical Phase Transformation of Rapidly Quenched Ti–Ni–Cu Ribbons, Materials Transactions, JIM 31(6) (1990) 504-508. [52] Y. Furuya, M. Matsumoto, H. Kimura, T. Masumoto, Thermoelastic phase transformation of melt-spun Ti50Ni50− xCux (x= 0–20 at.%) ribbons, Materials Science and Engineering: A 147(1) (1991) L7-L11. [53] V. Saravanan, A. Khantachawana, S. Miyazaki, Texture analysis and properties of rapidly solidified Ti52Ni38Cu10 shape memory alloy, Materials transactions 45(2) (2004) 208-213. [54] Z. Xie, J. Van Humbeeck, Y. Liu, L. Delaey, TEM study of Ti 50Ni 25Cu 25 melt spun ribbons, Scripta materialia 37(3) (1997) 363-371. [55] H. Rösner, P. Schloßmacher, A. Shelyakov, A. Glezer, Formation of TiCu plate-like precipitates in Ti50Ni25Cu25 shape memory alloys, Scripta materialia 43(10) (2000) 871-876. [56] H. Rösner, P. Schloßmacher, A. Shelyakov, A. Glezer, The influence of coherent TiCu plate-like precipitates on the thermoelastic martensitic transformation in melt-spun Ti50Ni25Cu25 shape memory alloys, Acta materialia 49(9) (2001) 1541-1548. [57] P. Schlossmacher, H. Rösner, A. Shelyakov, G. Gomarasca, G. Airoldi, Microstructure and properties of crystallized melt-spun Ti50Ni25Cu25 ribbons after current-driven thermal cycling, Le Journal de Physique IV 11(PR8) (2001) Pr8-333-Pr8-338. [58] T. Goryczka, M. Karolus, P. Ochin, H. Morawiec, Structure of melt spun Ni25Ti50Cu25 ribbons studied by X-ray diffraction, Le Journal de Physique IV 11(PR8) (2001) Pr8-345-Pr8-350. [59] R. Santamarta, J. Pons, E. Cesari, Thermo-mechanical behaviour of a Ni-Ti-Cu melt spun alloy, Le Journal de Physique IV 11(PR8) (2001) Pr8-351-Pr8-356. [60] L. Litynska, P. Vermaut, J. Morgiel, J. Dutkiewicz, P. Ochin, R. Portier, Martensitic transformation and microstructure of rapidly solidified Ti50-xNi25Cu25Zrx shap memory alloys, Le Journal de Physique IV 11(PR8) (2001) Pr8-357-Pr8-362. [61] D. Schryvers, P. Potapov, A. Ledda, A. Shelyakov, Structural characterisation of melt-spun Ti50Ni25Cu25 ribbons, Le Journal de Physique IV 11(PR8) (2001) Pr8-363-Pr8-368. [62] R. Santamarta, D. Schryvers, Microstructure of a partially crystallised Ti50Ni25Cu25 melt-spun ribbon, Materials Transactions 44(9) (2003) 1760-1767. [63] Y. Liu, Mechanical and thermomechanical properties of a Ti50Ni25Cu25 melt spun ribbon, Materials Science and Engineering: A 354(1-2) (2003) 286-291. [64] R. Santamarta, D. Schryvers, Effect of amorphous–crystalline interfaces on the martensitic transformation in Ti50Ni25Cu25, Scripta materialia 50(12) (2004) 1423-1427. [65] R. Santamarta, D. Schryvers, Twinned bcc spherical particles in a partially crystallized Ti50Ni25Cu25 melt-spun ribbon, Intermetallics 12(3) (2004) 341-348. [66] A. Khantachawana, H. Mizubayashi, S. Miyazaki, Texture and microstructure of Ti-Ni melt-spun shape memory alloy ribbons, Materials Transactions 45(2) (2004) 214-218. [67] J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, G.J.A.M. Eggeler, On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys, 90 (2015) 213-231. [68] K. Melton, O.J.A.M. Mercier, Fatigue of NiTi thermoelastic martensites, 27(1) (1979) 137-144. [69] S. Miyazaki, T. Imai, Y. Igo, K.J.M.t.A. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, 17(1) (1986) 115-120. [70] S. Miyazaki, K.J.M.T.A. Otsuka, Deformation and transition behavior associated with theR-phase in Ti-Ni alloys, 17(1) (1986) 53-63. [71] A. Ahadi, Q.J.A.P.L. Sun, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—effects of grain size, 103(2) (2013) 021902. [72] M. Li, Q.J.J.o.t.M. Sun, P.o. Solids, Nanoscale phase transition behavior of shape memory alloys—closed form solution of 1D effective modelling, 110 (2018) 21-37. [73] Y. Zhang, Z. Moumni, J. Zhu, W.J.S.M. Zhang, Effect of the amplitude of the training stress on the fatigue lifetime of NiTi shape memory alloys, 149 (2018) 66-69. [74] H. Yin, Y. He, Q.J.J.o.t.M. Sun, P.o. Solids, Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy, 67 (2014) 100-128. [75] H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, Y.J.M.S. Chumlyakov, E. A, Cyclic deformation behavior of single crystal NiTi, 314(1-2) (2001) 67-74. [76] Z. Yang, D. Cong, X. Sun, Z. Nie, Y.J.A.M. Wang, Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys, 127 (2017) 33-42. [77] E. Pieczyska, S. Gadaj, W. Nowacki, H.J.E.M. Tobushi, Phase-transformation fronts evolution for stress-and strain-controlled tension tests in TiNi shape memory alloy, 46(4) (2006) 531-542. [78] J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I.J.A.P.L. Takeuchi, Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires, 101(7) (2012) 073904. [79] V.K. Pecharsky, K.A.J.P.r.l. Gschneidner Jr, Giant magnetocaloric effect in Gd 5 (Si 2 Ge 2), 78(23) (1997) 4494. [80] A. Mischenko, Q. Zhang, J. Scott, R. Whatmore, N.J.S. Mathur, Giant electrocaloric effect in thin-film PbZr0. 95Ti0. 05O3, 311(5765) (2006) 1270-1271. [81] M. Zhou, Y. Li, C. Zhang, S. Li, E. Wu, W. Li, L.J.J.o.P.D.A.P. Li, The elastocaloric effect of Ni50. 8Ti49. 2 shape memory alloys, 51(13) (2018) 135303. [82] M. Schmidt, A. Schütze, S.J.A.M. Seelecke, Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span, 4(6) (2016) 064107. [83] X. Xie, Q. Kan, G. Kang, F. Lu, K.J.M.S. Chen, E. A, Observation on rate-dependent cyclic transformation domain of super-elastic NiTi shape memory alloy, 671 (2016) 32-47. [84] Y. Wu, E. Ertekin, H.J.A.M. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys–Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, 135 (2017) 158-176. [85] K. Engelbrecht, J. Tušek, S. Sanna, D. Eriksen, O.V. Mishin, C.R. Bahl, N.J.A.m. Pryds, Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling, 4(6) (2016) 064110. [86] L. Bumke, C. Zamponi, J. Jetter, E.J.J.o.A.P. Quandt, Cu-rich Ti52. 8Ni22. 2Cu22. 5Co2. 5 shape memory alloy films with ultra-low fatigue for elastocaloric applications, 127(22) (2020) 225105. [87] L. VAN, F. VAN LOO, PHASE RELATIONS IN THE TERNARY TI-NI-CU SYSTEM AT 800 AND 870OC, (1978). [88] R. Nagarajan, K.J.A.m.e.m. Chattopadhyay, Intermetallic Ti2Ni/TiNi nanocomposite by rapid solidification, 42(3) (1994) 947-958. [89] W. Cai, X. Meng, L.J.C.O.i.S.S. Zhao, M. Science, Recent development of TiNi-based shape memory alloys, 9(6) (2005) 296-302. [90] X. Zhang, H.J.M.S. Sehitoglu, E. A, Crystallography of the B2→ R→ B19′ phase transformations in NiTi, 374(1-2) (2004) 292-302. [91] A. Ishida, M. Sato, A. Takei, S.J.M.T. Miyazaki, JIM, Effect of heat treatment on shape memory behavior of Ti-rich Ti–Ni thin films, 36(11) (1995) 1349-1355. [92] S. Nemat-Nasser, W.-G.J.M.o.m. Guo, Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures, 38(5-6) (2006) 463-474. [93] C.-H. Chen, N.-H.J.J.o.A. Lu, Compounds, Improved functional stability of Ti-rich TiNi shape memory ribbon prepared by melt-spinning, 819 (2020) 152988. [94] H. Zhang, X. Li, X.J.J.o.a. Zhang, compounds, Grain-size-dependent martensitic transformation in bulk nanocrystalline TiNi under tensile deformation, 544 (2012) 19-23. [95] H. Yin, Y. He, Z. Moumni, Q.J.I.J.o.F. Sun, Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy, 88 (2016) 166-177. [96] S. Qian, Y. Geng, Y. Wang, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, J.J.i.j.o.r. Cui, A review of elastocaloric cooling: Materials, cycles and system integrations, 64 (2016) 1-19.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79560-
dc.description.abstract"本研究利用快速凝固製程(RSP)製作出TiNiCu形狀記憶合金箔帶,並針對其麻田散體相變態行為、顯微結構、形狀記憶效應、以及超彈性進行探討。本研究發現400℃以及500℃的時效條件對Ti50.5Ni44.5Cu5箔帶的相變態溫度影響不大,確認是因為基底成分與噴鑄狀態(as-spun)相同所致。而Ti50.5Ni44.5Cu5箔帶經800℃時效24小時後則因為Ti2(Ni,Cu)以及Ti2(Ni,Cu)3的析出,造成基底成分變化,使得相變態峰值溫度下降。此外,as-spun Ti50.5Ni44.5Cu5箔帶熱循環至1500次後,麻田散體相變態峰值溫度及麻田散體逆變態峰值溫度分別僅下降1.9℃及2.1℃,顯示出良好熱穩定性。在形狀記憶效應實驗中,於170MPa之應力下觀察到as-spun Ti50.5Ni44.5Cu5箔帶具有4.7%之可回復應變,不可回復應變小於0.11%;Ti50.5Ni44.5Cu5箔帶經400℃、500℃時效1小時後則分別有5.1%、5.0%之可回復應變,不可回復應變小於0.11%;800℃時效24小時之Ti50.5Ni44.5Cu5箔帶具有4.7%之可回復應變,不可回復應變約0.17%,從實驗結果可知,Ti50.5Ni44.5Cu5箔帶之可回復應變、不可回復應變會跟材料潛熱以及析出物的狀態有關。從超彈性結果來看,as-spun Ti50.5Ni44.5Cu5箔帶具有4.5%之超彈性,最大彈熱效應的溫度變化量來到10.3℃,而800℃時效24小時後Ti50.5Ni44.5Cu5箔帶在拉伸實驗中僅量測到1%之應變量。經分析結果顯示800℃時效24小時之Ti50.5Ni44.5Cu5箔帶因為太脆而在產生麻田散體變態之前斷裂所致。As-spun Ti50.5Ni44.5Cu5箔帶在經過2%與4%超彈性循環後,試片分別於201、91次循環後破壞,且因4%超彈性循環所累積之差排較多,造成功能性降級較大。最後本研究選用as-spun Ti50.9Ni48.2Si0.2與Ti50.5Ni44.5Cu5箔帶進行超彈性比較。Ti50.9Ni48.2Si0.2箔帶同樣有4.5%之超彈性,最大彈熱效應的溫度變化量為11.3℃。此外,Ti50.9Ni48.2Si0.2箔帶在經過4%超彈性循環後,Ti50.9Ni48.2Si0.2箔帶因為厚度分布較不均,使疲勞壽命較差,但因Ti50.9Ni48.2Si0.2箔帶晶粒尺寸較小,具有細晶強化效果,所產生的功能性降級幅度較小。不同溫度下之超彈性測試顯示Ti50.9Ni48.2Si0.2箔帶可在40~55℃溫度範圍內展現2%超彈性性能;Ti50.5Ni44.5Cu5箔帶可在69~94℃溫度範圍內具有3%超彈性性能。此外,也針對箔帶於不同溫度下之彈熱效應進行量測,並計算出材料性能係數作為固態冷媒選用之依據。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:03:43Z (GMT). No. of bitstreams: 1
U0001-2009202115203400.pdf: 25945908 bytes, checksum: 6dbea635d3af391eb2998e6807f149b6 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents論文口試委員審定書 i 致謝 iii 摘要 iv Abstract v 目錄 vii 第一章 前言 1 第二章 文獻探討 2 2-1 形狀記憶合金簡介 2 2-2 熱彈型麻田散體相變態 2 2-3 麻田散體相變態溫度 4 2-4 形狀記憶效應和超彈性 5 2-5 TiNiCu形狀記憶合金 7 2-6快速凝固製程 8 2-7形狀記憶合金疲勞之特性 10 2-8彈熱效應 11 第三章 實驗設備與方法 32 3-1塊狀Ti50.5Ni44.5Cu5合金之配置及熔煉 32 3-2 RSP製備之TiNiCu合金箔帶 32 3-3 Ti50.5Ni44.5Cu5合金箔帶之時效處理 33 3-4 DSC實驗 33 3-5 熱循環實驗 34 3-6 形狀記憶效應實驗 34 3-7 SEM成分分析 34 3-8 XRD晶體結構分析 35 3-9 拉伸超彈性實驗 35 3-10 彈熱效應量測 36 第四章 Ti50.5Ni44.5Cu5與Ti50.9Ni48.2Si0.2合金箔帶實驗結果 44 4-1 Ti50.5Ni44.5Cu5合金箔帶 44 4-1-1 As-spun與時效箔帶之DSC實驗結果 44 4-1-2 As-spun與時效箔帶微結構與成份分析之實驗結果 45 4-1-3 As-spun與時效箔帶之熱循環實驗結果 47 4-1-4 As-spun與時效箔帶之形狀記憶效應結果 48 4-1-5 As-spun與時效箔帶拉伸實驗、彈熱效應之結果 49 4-1-6 As-spun箔帶應力應變循環與彈熱效應之結果 51 4-2 As-spun Ti50.9Ni48.2Si0.2與Ti50.5Ni44.5Cu5箔帶之拉伸超彈性性能比較 53 4-2-1 As-spun Ti50.9Ni49.8Si0.2與Ti50.5Ni44.5Cu5箔帶拉伸實驗之結果 53 4-2-2 As-spun Ti50.9Ni49.8Si0.2與Ti50.5Ni44.5Cu5箔帶之應力應變循環與彈熱效應之結果 55 4-2-3 As-spun Ti50.9Ni49.8Si0.2與Ti50.5Ni44.5Cu5箔帶於不同測試溫度下之超彈性與彈熱效應結果 57 第五章 結論與未來展望 99 5-1 結論 99 5-2 未來展望 100 參考文獻 101
dc.language.isozh-TW
dc.titleTi51.6Ni43.3Cu4.9Si0.2形狀記憶合金之麻田散體相變態行為與機械性質之研究zh_TW
dc.titleResearch on Martensitic Transformation Behavior and Mechanical Properties of Ti51.6Ni43.3Cu4.9Si0.2 Shape Memory Alloyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄒年棣(Hsin-Tsai Liu),曾立維(Chih-Yang Tseng)
dc.subject.keyword形狀記憶合金箔帶,麻田散體相變態,超彈性,彈熱效應,zh_TW
dc.subject.keywordShape memory ribbon,Martensitic transformation,Superelasticity,Elastocaloric effect,en
dc.relation.page105
dc.identifier.doi10.6342/NTU202103258
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2009202115203400.pdf25.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved