請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79544完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭光宇(Guang-Yu Guo) | |
| dc.contributor.author | Kuang-Chi Chen | en |
| dc.contributor.author | 陳廣奇 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:03:17Z | - |
| dc.date.available | 2021-10-04 | |
| dc.date.available | 2022-11-23T09:03:17Z | - |
| dc.date.copyright | 2021-10-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-25 | |
| dc.identifier.citation | [1] B. Ham, The Periodic Table (Essential Chemistry), Infobase, (2008). [2] V. Carteaux, D. Brunet, G. Ouvrard, and G. Andre, Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6, J. Phys. : Condens. Matter 7.69 (1995). [3] V. Carteaux, G. Ouvrard, J. C. Grenier, and Y. Laligant, Magnetic structure of the new layered ferromagnetic chromium hexatellurosilicate Cr2Si2Te6, J. Magn. Magn. Mater. 127-133, 94 (1991). [4] H. Ji, R. Stokes, L. Alegria, E. Blomberg, M. Tanatar, A. Reijnders, L. Schoop, T. Liang, R. Prozorov, K. Burch et al., A ferromagnetic insulating substrate for the epitaxial growth of topological insulators, J. Appl. Phys. 114, 114907 (2013). [5] H. Kirchmayr, Magentic Anisotropy, Encyclopedia of materials: science and technology, Elsevier, (2001). [6] V. Antonov, B. Harmon, and A. Yaresko, Electronic structure and magneto-optical properties of solids, Springer Science Business Media, (2004). [7] G. W. Fernando, Chapter 4-Magnetic Anisotropy in Transition Metal Systems, Elsevier, (2008). [8] T. Lan, B. Ding, and B. Liu., Magneto‐optic effect of two‐dimensional materials and related applications, Nano Select, 1 298-310 (2020). [9] M. Mansuripur, The Principles of Magneto-optical Recording (Cambrige Univ. Press, Cambridge 1995). [10] J. P. Castera, in Magneto-optical Devices, vol 9 Encyclopedia of Applied Physics, edited by G. L. Trigg (Wiley-VCH, New York, 1996), p. 133. [11] Y. Fang, S. Wu, Z. Z. Zhu, and G. Y. Guo, Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr2Ge2Te6, Phys. Rev. B 98, 125416 (2018). [12] C. Kittel, Introduction to Solid State Physics. 8, Wiley, (2004). [13] V. Fock, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems., Z. Physik 61, 126 (1930). [14] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, 864-871 (1964). [15] M. Levy, Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem, Proceedings of the National Academy of Sciences 76, 6062-6065 (1979). [16] W. Kohn, and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965). [17] G. Kresse, M. Marsman, and J. Furthmuller, VASP user guide, Institut fur Materialphysik, 62-63 (2005). [18] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999). [19] N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, A. R. Tackett, Comparison of the PAW, PS and LAPW formalisms for density functional calculations of solids, Phys. Rev. B 55, 2005 (1997). [20] P. E. Blochl, Projector-augmented wave method, Phys. Rev. B 50, 17953 (1994). [21] G. Kresse and J. Furthmuller, Efficient interactive schemes for ab initio total energy calculations using a plane wave basis set, Phys. Rev. B 54, 11169 (1996). [22] L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc 23, 542 (1927). [23] E. Fermi, Statistical method to determine some properties of atoms, Rend. Accad. Naz. Lincei 6, 602 (1927). [24] J. P. Perdew and A. Zunger, Self interaction correction to density functional approximations for many electron systems, Phys. Rev. B 23, 5048 (1981). [25] M. Ernzerhof and G. E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional, J. Chem. Phys. 110, 5029 (1999). [26] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation made simple, Phys. Rev. Lett. 77, 3865 (1996). [27] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57, 1505 (1998). [28] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125, 224106 (2006). [29] J. Heyd, Screened Coulomb Hybrid Density Functionals, J. Chem. Phys. 118, 8207 (2003). [30] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys. 105, 9982 (1996). [31] N. Marzari, and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997). [32] X. Wu, A. Selloni, and R. Car, Order-N implementation of exact exchange in extended insulating systems, Phys. Rev. B 79, 085102 (2009). [33] T. L. Chow, Introduction to electromagnetic theory: a modern perspective, Jones Bartlett Learning, (2006). [34] J. Inoue, Nanomagnetism and Spintronics: Chapter 2. GMR, TMR, BMR, and Related Phenomena, Elsevier, (2013). [35] L. H. Thomas, The kinematics of an electron with an axis, Philos. Mag. 3, 1–22 (1927). [36] G. P. Fisher, The Thomas precession, Am. J. Phys. 40, 1772-1781 (1972). [37] P. M. Oppeneer, T. Maurer, J. Sticht, and J. Kübler, Ab initio calculated magneto-optical Kerr effect of ferromagnetic metals: Fe and Ni, Phys. Rev. B 45, 10924 (1992). [38] C. S. Wang and J. Callaway, Band structure of nickel: Spin-orbit coupling, the Fermi surface, and the optical conductivity, Phys. Rev. B 9, 4897 (1974). [39] W. Feng, G.Y. Guo, J. Zhou, Y. Yao, and Q. Niu, Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt), Phys. Rev. B 92, 144426 (2015). [40] B. Adolph, J. Furthmu ̈ller, and F. Bechstedt, Optical properties of semiconductors using projector augmented waves, Phys. Rev. B 63, 125108 (2001). [41] W. M. Temmerman, P. A. Sterne, G. Y. Guo, and Z. Szotek, Electronic structure calculations of high Tc materials, Mol. Simul. 63, 153 (1989). [42] J. L. Erskine and E. A. Stern, Calculation of the M23 magneto-optical absorption spectrum of ferromagnetic nickel, Phys. Rev. B 12, 5016 (1975). [43] G. B. Arfken, H. J. Weber, F. E. Harris, Mathematical Methods for Physicists-A Comprehensive Guide, 7ed, 591-594 (2013). [44] G.Y. Guo, K.C. Chu, D.S. Wang, and C.G. Duan, Linear and nonlinear optical properties of carbon nanotubes from first-principle calculations, Phys. Rev. B 69, 205416 (2004). [45] G. Y. Guo and H. Ebert, Theoretical investigation of the orientation dependence of the magneto-optical Kerr effect in Co, Phys. Rev. B. 50, 10377 (1994). [46] G.Y. Guo, H. Ebert, Band theoretical investigation of the magneto-optical Kerr effect in Fe and Co mulitlayers, Phys. Rev. B 51, 12633 (1995). [47] P. Ravindran, A. Delin, P. James, B. Johansson, J. M. Wills, R. Ahuja, and O. Eriksson, Magnetic, optical, and magneto-optical properties of MnX (X= As, Sb, or Bi) from full-potential calculations, Phys. Rev. B 59, 15680 (1999). [48] K. Aleksandrov,“Preparation, Structure and Properties of New Ternary Chalcogenides and Germanides of the Metals from the First Transition Series, Cr, Mn, Fe and Ni”(Doctoral dissertation, 2006). [49] J. Gopalakrishnan, K.S. Nanjundaswamy, New transition metal silicoselenides possessing CdI2-type structures, Materials Research Bulletin, 23 107-112 (1988). [50] L. D. Casto, A. J. Clune, M. O. Yokosuk, J. L. Musfeldt, T. J. Williams, H. L. Zhuang, M. W. Lin, K. Xiao, R. G. Hennig, B. C. Sales, J. Q. Yan, and D. Mandrus, Strong spin-lattice coupling in CrSiTe3, APL Mater. 3, 041515 (2015). [51] Z. H. Levine and D. C. Allan, Quasiparticle calculation of the dielectric response of silicon and germanium, Phys. Rev. B 43, 4187 (1991). [52] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125, 224106 (2006). [53] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, Gibertini, D. Gresch, C. Johnson, T. Koretsune et al, Wanniet90 as a community code : new features and applications, J. Phys.: Condens. Matter 32 165902 (2020). [54] D.S. Wang, R. Wu, and A.J. Freeman, First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model, Phys. Rev. B 47, 14932 (1993). [55] H. Takayama, K.P. Bohnen, and P. Fulde, Magnetic surface anisotropy transition metals, Phys. Rev. B 14, 2287 (1976). [56] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546, 265 (2017). [57] Z. Fei, B. Huang, P. Malinowskil, W. Wang, T. Song, J. Sanchezl, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu, D. H. Cobden, J. H. Chu, and X. Xu, Two-dimensional itinerant ferromagnetism automatically thin film Fe3GeTe2, Nat. Mat. 17, 778 (2018). [58] S. Tomita, T. Kato, S. Tsunashima, S. Iwata, M. Fujii, and S. Hayashi, Magneo-optical Kerr effects of Yittrium-Iron Garnet Thin Films Incorporating Gold Nanoparticles, Phys. Rev. Lett. 96, 167402 (2006). [59] W. K. Li, and G. Y. Guo, A First Principle Study on Magneto-optical Effects and Magnetism in Ferromagnetic Semiconductors Y3Fe5O12 and Bi3Fe5O12, arXiv, 2005.14133 (2020). [60] B. Huang, G. Clark, E. Navarro-Moratalla, and D. R. Klein et al, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546, 270 (2017). [61] P. G. van Engen, K. H. J. Buschow, R. Jongebreur, and M. Erman, PtMnSb, a material with very high magneto-optical Kerr effect, Appl. Phys. Lett. 42, 202 (1983). [62] G. Y. Guo, H. Ebert, On the origins of the enhanced magneto-optical Kerr effect in ultrathin Fe and Co multilayers, J. Magn. Magn. Mater. 156, 173 (1996). [63] G. Q. Di, and S. Uchiyama, Optical and magnetooptical properties of MnBi film, Phys. Rev. B 53, 3327 (1996). [64] P. Ravindran, A. Delin, P. James, B. Johansson, J. M. Wills, R. Ahuja, and O. Eriksson, Magnetic, optical, and magneto-optical properties of MnX (X = As, Sb, or Bi), Phys. Rev. B 59, 15680 (1999). [65] R. Lang, A. Winter, H. Pascher, H. Krenn, X. Liu, and J. K. Furdyna, Polar Kerr effect studies of Ga1−xMnxAs epitaxial films, Phys. Rev. B 72, 024430 (2005). [66] T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. Le Berre, and H. Joisten, Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering, J. Magn. Magn. Mater. 284, 77 (2004). [67] B. Vertruyen, R. Cloots, J. S. Abell, T. J. Jackson, R. C. da Silva, E. Popova, and N. Keller, Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films, Phys. Rev. B 78, 094429 (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79544 | - |
| dc.description.abstract | " 磁光效應不僅測量材料的磁性和電子結構,且在科技上有重要的應用,例如高密度記憶儲存設備。在碳族硫族酸鉻化合物Cr2X2Y6(X = Ge, Si; Y = Te, Se)裡,因碳族碲酸鉻化合物(Cr2X2Te6)是鐵磁半導體及鍺碲酸鉻(Cr2Ge2Te6)於最近的研究發現有強磁光效應,但碳族硒酸鉻化合物(Cr2X2Se6)的磁性和導電能力未知,故可用此四種材料來做基礎物理研究。至今除了鍺碲酸鉻(Cr2Ge2Te6),尚未有第一原理計算研究其餘三個材料之磁光效應。於此論文中,會以鷹勢能搭配廣義梯度近似及哈伯項(GGA+U)方法的密度泛函理論計算並有系統地討論碳族硫族酸鉻化合物的電子結構、磁性、磁晶異向能、光學和磁光性質。我們不僅預測碳族硒酸鉻化合物為鐵磁半導體,且發現碳族硫族酸鉻化合物的磁晶異向能之範圍介於0.01(毫電子伏特/化學式)和1(毫電子伏特/化學式)之間。此外,矽碲酸鉻(Cr2Si2Te6)、鍺硒酸鉻(Cr2Ge2Se6)和矽硒酸(Cr2Si2Se6)有不同的磁光效應,像是矽碲酸鉻(Cr2Si2Te6)、鍺硒酸鉻(Cr2Ge2Se6)和矽硒酸鉻(Cr2Si2Se6)之最大克爾旋轉角皆大於0.4度 (於光子能量 ≤ 8電子伏特),而矽碲酸鉻(Cr2Si2Te6)、鍺硒酸鉻(Cr2Ge2Se6)和矽硒酸鉻(Cr2Si2Se6)的法拉第旋轉角分別為3.0度/微米、-0.9度/微米和-6.6度/微米(於光子能量約2.07電子伏特),皆超過釔鐵石榴石(Y3Fe5O12)的六倍大。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:03:17Z (GMT). No. of bitstreams: 1 U0001-2309202110580600.pdf: 3578631 bytes, checksum: 4d1a5a3bd738bfad851b1835f431d598 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 # 摘要 i Abstract ii List of Figures v List of Tables vii Chapter 1 Introduction 1 1.1 Magnetocrystalline anisotropy energy 1 1.2 Magneto-optical effects 1 Chapter 2 Theory and computational methods 4 2.1 Bloch theorem, Brillouin zone, and band structures 4 2.2 Density Functional theory 6 2.2.1 Hohenberg-Kohn theorem 8 2.2.2 Kohn-Sham theorem 8 2.3 Projector augmented-wave method 11 2.4 Thomas Fermi theory 12 2.5 Exchange correlation potentials 14 2.5.1 Local density approximation 14 2.5.2 Generalized gradient approximation with the effective on-site Coulomb energy U 15 2.6 The hybrid HSE06 functional within the maximally localized Wannier functions 16 2.7 Spin-orbit coupling 18 2.8 Magnetocrystalline anisotropy energy 20 2.9 Optical conductivity and Magneto-optical effects 20 Chapter 3 Properties of Cr2X2Y6 24 3.1 Crystal Structure 24 3.2 Magnetic moment and Magnetocrystalline anisotropy energy 26 3.3 Electronic structure 28 3.3.1 Band structure 28 3.3.2 Density of states 31 3.4 Optical conductivity 36 3.5 Magneto-optical effects 42 Chapter 4 Conclusion 47 Bibliography 49" | |
| dc.language.iso | en | |
| dc.title | "以第一原理計算研究碳族硫族酸鉻化合物的電子結構及磁光效應 (碳族:鍺,矽;硫族:碲,硒)" | zh_TW |
| dc.title | "An ab-initio study of electronic structure and magneto-optical effects of bulk Cr2X2Y6 (X= Ge, Si ; Y= Te, Se)" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹楊皓(Hsin-Tsai Liu),薛宏中(Chih-Yang Tseng),李啟正,蔡政達 | |
| dc.subject.keyword | 碳族硫族酸鉻化合物(碳族:鍺、矽,硫族:碲、硒),磁晶異向能,磁光效應,第一原理計算,鐵磁半導體, | zh_TW |
| dc.subject.keyword | Cr2X2Y6 (X = Ge, Si,Y= Te, Se),magnetocrystalline anisotropy energy,magneto-optical effect,first principle calculation,ferromagnetic semiconductor, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202103308 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2309202110580600.pdf | 3.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
