Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭宗記(Tzong-Jih Cheng)
dc.contributor.authorPo-Heng Shenen
dc.contributor.author沈柏亨zh_TW
dc.date.accessioned2022-11-23T09:03:14Z-
dc.date.available2023-09-01
dc.date.available2022-11-23T09:03:14Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-28
dc.identifier.citation農委會。 2015。動物用藥品使用準則。農防字第 1051472565 號。 衛生福利部。2019。動物用藥殘留標準。衛授食字第 1081302402 號。 Abd el Haleem, S. M., and B. G. Ateya. 1981. Cyclic voltammetry of copper in sodium hydroxide solutions. J. Electroanal. Chem. 117: 309-319. Alleman, K. S., K. Weber, and S. E. Creager. 1996. Electrochemical Rectification at a Monolayer-Modified Electrode. J. Phys. Chem. 100(42): 17050-17058. Arya, S. K., P. Zhurauski, P. Jolly, M. R. Batistuti, M. Mulato, and P. Estrela. 2018. Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens. Bioelectron. 102: 106-112. Bain, C. D., J. Evall, and G. M. Whitesides. 1989. Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J. Am. Chem. Soc. 111(18): 7155-7164. Bard, A. J., and L.R. Faulkner. 2000. Electrochemical methods: fundamentals and applications. New York: John Wiley Sons, Inc. Benvidi, A., M. D. Tezerjani, S. M. Moshtaghiun, and M. A. Mohammad. 2016. An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Microchim Acta 183: 1797–1804. Berezovski, M., M. Musheev, A. Drabovich, and S. N. Krylon. 2006. Non-SELEX selection of aptamers. J. Am. Chem. Soc. 128(5): 1410-1411. Berggren, C., B. Bjarnason, and G. Johansson. 2001. Capacitive biosensors. Electroanalysis 13(3): 173-180. Boubour, E., and R. B. Lennox. 2000. Langmuir 16(9): 4222-4228. Chen, D., D. Yao, C. Xie, and D. Liu. 2014. Development of an aptasensor for electrochemical detection of tetracycline. Food Control 42: 109-115. Chen, H. J., R. L. C. Chen, B. C. Hsieh, H. Y. Hsiao, Y. Kung, Y. T Hou, and T. J. Cheng. 2019. Label-free and reagentless capacitive aptasensor for thrombin. Biosens. Bioelectron. 131: 53-59. Clark Jr., L. C., and C. Lyons, 1962. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102(1): 29-45. Dilimon, V. S., G. Fonder, J. Delhalle, and Z. Mekhalif. 2011. Self-assembled monolayer formation on copper: a real time electrochemical impedance study. J. Phys. Chem. 115(37):18202–18207. Duwez, A. S. 2004. Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review. J. Electron. Spectros. Relat. Phenomena. 134(2-3):97-138. Ertürk, G., and R. Lood. 2018. Bacteriophages as biorecognition elements in capacitive biosensors: Phage and host bacteria detection. Sens. Actuators B Chem. 258:535-543. European Commission, 2003. Regulation (EC) N_ 1831/2003 of the European Parliament and of the Council of 22 September 2003, Off. J. Eur. Union L268, 29. European Commission., 1996. Council Directive 96/23/EC of 29 April 1996, Off. J. Eur. Union L125, 10. Ferapontova, E. E., K. V. Gothelf. 2009. Effect of serum on an RNA aptamer-based electrochemical sensor for theophylline. Langmuir 25: 4279-4283. Gebbert, A., M. A. Icaza, W. Stoecklein., and R. D. Schmid. 1992. Real-time monitoring of immunochemical interactions with a tantalum capacitance flow-through cell. Anal. Chem. 64(9): 997-1003. Gholivand, M. B., and H. Khani. 2013. Determination of tetracycline at a UV-irradiated DNA film modified glassy carbon electrode. Electroanalysis 25(2): 461-467. Gooding, J. J., F. Mearns, W. Yang, and J. Liu, 2002. Self-assembled monolayers into the 21st century: recent advances and applications. Electroanalysis 15(2): 81-96. Hash, J. H., M. Wishnick, and P. A. Miller. 1963. On the mode of action the tetracyclcline antibiotics in staphylococcus aureus. J. Biol. Chem. 239: 2070–2078. Hermann, T., and D. J. Patel. 2000. Adaptive recognition by nucleic acid aptamers. Science 5454(287): 820-825. Huang, S. M., A. B. Plaskowski, C. G. Xie, and M. S. Beck. 1989. Tomographic imaging of two-component flow using capacitance sensors. J. Phys. E Sci. Instrum. 22(3): 173-177. Hünniger, T., H. Wessels, C. Fischer, P. K. Angelika, and M. Fischer. 2014. Just in time-selection: a rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal. Chem. 86(21):10940-10947. Inkpen, M. S., Z. F. Liu, H. Li, L. M. Campos, J. B. Neaton, and L. Venkataraman. 2019. Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat. Chem. 11: 351-358. Ishibashi, M., M. ltoh, H. Nishihara, and K. Aramaki. 1996. Permeability of alkanethiol self-assembled monolayers adsorbed on copper electrodes to molecular oxygen dissolved in 0.5 M Na2So4 solution. Electrochimica Acta 41(2): 241-248. Jalalian, S. H., S. M. Taghdisi, N. M. Danesh, H. Bakhtiari, P. Lavaee, M. Ramezani, and K. Abnous. 2015. Sensitive and fast detection of tetracycline using an aptasensor. Anal. Methods 7: 2523-2528. Jayasena, S. D. 1999. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 9(45): 1628-1650. Jeong, S., and R. Paeng. 2012. Sensitivity and selectivity on aptamer-based assay: the determination of tetracycline residue in bovine milk. I. Sci. World J. Article ID 159456. Kim, J., A. S. Campbell, B. E. F. Ávila, and J. Wang. 2019. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37: 389–406. Kwon, Y. S., N. H. A. Raston, M. B. Gu. 2014. An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity. Chem. Commun. 50: 40-42. Laibinis, P. E., and G. M. Whitesides. 1992. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air. J. Am. Chem. Soc. 114: 9022−9027. Laibinis, P. E., G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo. 1991. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 113: 7152-7167. Lee, S. R., Y. T. Lee, K. Sawada, H. Takao, and M. Ishida. 2008. Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes. Biosens. Bioelectron. 24(3): 410-414. Liu, X., D. Huang, C. Lai, G. Zeng, L. Qin, and C. Zhang. 2018. Recent advances in sensors for tetracycline antibiotics and their applications. Trends Analyt. Chem. 109: 260-274. Limbut, W., P. Thavarungkul, P. Kanatharna, B. Wongkittisuksa,; P. Asawatreratanakul, and C. Limsakul. 2010. Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor. Electrochimica Acta 55(9): 3268-3274. Love, J. C., J. L. A. Estroff, J. K Kriebel, R. G. Nuzzo, and G. M. Whitesides. 2005. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4): 1103–1169. Ma, H. Y., C. Yang, B. S. Yin, G. Y. Li, S. H. Chen, and J. L. Luo. 2003. Electrochemical characterization of copper surface modified by n-alkanethiols in chloride-containing solutions. Appl. Surf. Sci. 218(1-4): 144-154. Müller, M., J. E. Weigand, O. Weichenrieder, and B. Suess. 2006. Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res. 34(9): 2607-2617. Newman, A. L., K. W. Hunter, and W. D. Stanbro. 1986. The capacitive affinity sensor: a new biosensor. In “Proceedings of the Second International Meeting on Chemical Sensors”, 596–598. Bordeaux, France. Niazi, J. H., S. J. Lee, and M. B. Gu. 2008. Single-stranded DNA aptamers specific for antibiotics tetracyclines. Bioorg. Med. Chem. 16(15): 7245-7253. Nuzzo, R. G., and D. L. Allara. 1983. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc.105: 4481-4483. Qin, Y., X. Yang, and J. Zhang. 2019. Target capturing performance of microfluidic channel surface immobilized aptamers: the effects of spacer lengths. Biomed Microdevices 21, 54. Rahman, M. S. B. A., S. C. Mukhopadhyay, and P. L. Yu. 2010. Novel sensors for food inspections. Sens. Transducers 114(3): 1-40. Ramezani, M., N. M. Danesh, P. Lavaee, K. Abnous, and S. M. Taghdisi. 2015. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens. Bioelectron. 70(15): 181-187. Savéant, J. M. 2006. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry. John Wiley Sons: Hoboken, NJ. Schwartz, D. K. 2001. Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52: 107-137. Schilardi, P. L., P. Dip, P. C. dos Santos Claro, G. A. Benitez, M. H. Fonticelli, O. Azzaroni, and R. C. Salvarezza. 2006. Electrochemical deposition onto self-assembled monolayers: new insights into micro-and nanofabrication. Chem.–Eur. J. 12: 38–49. Semenkov, Y. P., E. M. Makarov, V. I. Makhno; S. V. Kirillov. 1982. Kinetic aspects of tetracycline action on the acceptor (A) site of Escherichia coli ribosomes. FEBS Lett. 144(1): 125-129. Song, S., L. Wang, J. Li, C. Fan, and J. L. Zhao. 2008. Aptamer-based biosensors. Trends Analyt. Chem. 27(2): 108-117. Tang, Y., J. Zhang, J. H. Liu, I. Gapparov, S. Wang, Y. Dong, H. Su, and T. Tan. 2017. The development of a graphene oxide-based aptasensor used for the detection of tetracycline in honey. Anal. Methods 9: 1133-1140. Tritton, T. R. 1977. Ribosome-tetracycline interactions. Biochemistry 16: 4133–4138. Tuerk, C., and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968): 505-515. US-Food and Drug Administration (FDA), 2020. Tolerance for residues of new animal drugs in food. Code of Federal Regulations, 21, 6. Vericat, C., M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza. 2010. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39: 1805-1834. Wang, L., M. Veselinovic, L. Yang, B. J. Geiss, D. S. Dandy, T. Chen. 2017. A sensitive DNA capacitive biosensor using interdigitated electrodes. Biosens. Bioelectron. 87: 646-653. Wang, X., E. Liu, and X. Zhang. 2014. Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. Electrochimica Acta 130: 253-260. Wu, C. C., M. T. Lee, M. I. Sari, and Y. H. Hsieh. 2018. A disposable non-enzymatic histamine sensor based on the nafion-coated copper phosphate electrodes for estimation of fish freshness. Electrochimica Acta 283: 772-779. World Health Organization, 2018. Food and Agriculture Organization of the United Nations, MAXIMUM RESIDUE LIMITS (MRLs) AND RISK MANAGEMENT RECOMMENDATIONS (RMRs) FOR RESIDUES OF VETERINARY DRUGS IN FOODS, CX/MRL 2. Xie, C. G., A. L. Stott, A. Plaskowski, M. S. Beck. 1990. Design of capacitance electrodes for concentration measurement of two-phase flow. Meas. Sci. Technol. 1(1): 65-78.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79542-
dc.description.abstract電化學生物感測器一般以較昂貴的惰性材料(例如:金電極)做為修飾感測元件之基材,電極成本可能阻礙實務的普及與應用。故本研究旨在以銅箔為材料製備銅電極,並利用硫醇基與銅的自組裝將適體與硫醇分子固定於電極表面以做為感測電極使用。本研究從市售銅箔材料加工製作銅電極,以二價與三價的氯化六氨合釕(Ru(NH3)6Cl2/Ru(NH3)6Cl3)氧化還原對,在-400 mV至-100 mV(vs. Ag/AgCl)的電位區間可有效地進行電化學方法(循環伏安法、電化學阻抗頻譜法、定頻阻抗量測法)分析銅電極界面的定性與半定量分析。以50%硝酸清洗25秒做為前處理程序可有效去除銅電極表面抗氧化層與雜質之效果,亦可以低濃度硝酸於較長時間清洗下達相同的前處理效力。適體固定化上展現了相當於金電極的阻抗變化,顯示有效的適體固定化成果,而以適體與1-己硫醇以依序修飾方式可製備共修飾的感測界面。評估長鏈分子(正十二烷基硫醇)與短鏈分子(1-己硫醇)所形成自組裝單層的界面電性,100 mM正十二烷基硫醇修飾9小時的電荷轉移電阻Rct大於500 kΩ,可於銅電極形成緻密的自組裝單層並依感測器量測需求調整對應單層緻密度的修飾時間。在交流電阻抗量測的體系下,電荷轉移電阻Rct變化遠較電雙層電容Cdl顯著,故以阻抗分析界面時有較佳解析力,然而經修飾短鏈1-己硫醇的銅電極於接觸不同離子強度溶液時顯示其界面的不穩定性,呈現適體和1-己硫醇修飾於銅電極做為感測界面輔以電化學阻抗譜法量測的困難性,若能在銅電極修飾緻密且穩定的感測界面輔以電容式量測是較可能的感測方案。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:03:14Z (GMT). No. of bitstreams: 1
U0001-2309202113522900.pdf: 4292499 bytes, checksum: e451804f150df64be55daa7c1154db6d (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 i 致謝 ii 摘要 iii 英文摘要 iv 目錄 vi 圖目錄 ix 表目錄 xi 中英文對照與符號說明 xii 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究架構 3 第二章 文獻探討 5 2.1生物感測器 5 2.1.1阻抗式生物感測器. 7 2.1.2電容式生物感測器 10 2.1.3阻抗式與電容式生物感測器之比較 11 2.2 銅電極應用於電化學檢測回顧 12 2.3 自組裝單層 13 2.3.1自組裝單層之形成 13 2.3.2硫醇於金表面形成自組裝單層之研究 14 2.3.3硫醇於銅金屬形成自組裝單層成效 15 2.3.4自組裝單層於電容式生物感測器的應用 16 2.4 適體 17 2.4.1適體製程簡介 17 2.4.2適體感測器 18 2.4.3四環黴素適體 18 2.5 四環黴素 20 2.5.1四環黴素簡介 20 2.5.2四環黴素相關法規 20 2.5.3四環黴素適體檢測方法 22 第三章 實驗材料與方法 24 3.1實驗藥品與材料 24 3.2實驗儀器 25 3.3適體 25 3.4銅電極的製備與前處理 25 3.5銅電極表面修飾 27 3.6銅電極界面的電化學分析 29 3.7電感電容阻抗測試儀的電容量測 29 第四章 結果與討論 31 4.1銅的電化學性質與適合的分析條件 31 4.1.1銅的電化學性質 31 4.1.2銅電極的氧化還原對選擇與循環伏安法分析操作條件探討 35 4.2銅電極的表面前處理 38 4.2.1電極界面特性 38 4.2.2最佳硝酸濃度與前處理時間探討 41 4.3四環黴素適體的固定化 46 4.3.1適體的前處理 46 4.3.2四環黴素適體修飾的界面阻抗響應 53 4.4銅電極表面自組裝單層修飾 55 4.4.1修飾正十二烷基硫醇自組裝單層的銅電極表面之電化學特性 55 4.4.2修飾正十二烷基硫醇自組裝單層的最適化參數 58 4.4.3 電感電容阻抗測試儀與電化學阻抗圖譜法進行電容量測結果一致的頻率範圍 63 4.4.4修飾自組裝單層的於電感電容阻抗測試儀與電化學阻抗圖譜法進行電容量測的響應 66 4.5銅電極界面的隔絕層 72 4.5.1 1-己硫醇的修飾 72 4.5.2以適體與1-己硫醇製備感測電極界面之可分辨性與穩定性 76 4.5.3以定頻即時阻抗法感測四環黴素標準液 81 第五章 結論 84 參考文獻 85
dc.language.isozh-TW
dc.title探討以自組裝單層修飾之銅電極發展阻抗式適體感測器:以四環黴素類抗生素為例zh_TW
dc.titleStudy of Self-Assembled Monolayers of Thiolates on Copper Electrodes for Impedimetric Aptasensor Development: Tetracycline Detection as an Exampleen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳林祈(Hsin-Tsai Liu),何佳安(Chih-Yang Tseng),吳靖宙,蕭賢義
dc.subject.keyword適體感測器,硫醇,自組裝單層,電化學阻抗頻譜法,zh_TW
dc.subject.keywordaptasensors,thiol,self-assembled monolayers (SAMs),electrochemical impedance spectroscopy (EIS),en
dc.relation.page91
dc.identifier.doi10.6342/NTU202103317
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
dc.date.embargo-lift2023-09-01-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-2309202113522900.pdf4.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved