請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳正平(Jen-Ping Chen) | |
| dc.contributor.author | Chia-Jung Pi | en |
| dc.contributor.author | 皮家容 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:03:10Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.available | 2022-11-23T09:03:10Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-08 | |
| dc.identifier.citation | Abdul‐Razzak, H., Ghan, S. J., Rivera‐Carpio, C., 1998. A parameterization of aerosol activation: 1. Single aerosol type. Journal of Geophysical Research: Atmospheres, 103(D6), 6123-6131. doi:10.1029/97JD03735 Amenu, Geremew G., Praveen Kumar, 2005. NVAP and Reanalysis-2 Global Precipitable Water Products : Intercomparison and Variability Studies. Bull. Amer. Meteor. Soc., 86, 245–256. ARM, 2002. Atmospheric Radiation Measurement (ARM) user facility. MWR Retrievals (MWRRET1LILJCLOU). 2006-01-01 to 2006-02-28, Tropical Western Pacific (TWP) Central Facility, Darwin, Australia (C3). Compiled by D. Zhang. ARM Data Center. Data set accessed 2020-09-23 at http://dx.doi.org/10.5439/1027369. Bechtold, P., Cuijpers, J., Mascart, P., Trouilhet, P., 1995. Modeling of trade wind cumuli with a low-order turbulence model: Toward a unified description of Cu and Se clouds in meteorological models. Journal of the Atmospheric Sciences, 52(4), 455-463. doi:10.1175/1520-0469(1995)052<0455:MOTWCW>2.0.CO;2 Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., Schanen, D. P., 2013. Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. Journal of Climate, 26(23), 9655-9676. doi:https://doi.org/10.1175/JCLI-D-13-00075.1 Bony, S., Emanuel, K. A., 2001. A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. Journal of the Atmospheric Sciences, 58(21), 3158-3183. doi:10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 Bony, S., Dufresne, J. L., 2005. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophysical Research Letters, 32(20). doi:https://doi.org/10.1029/2005GL023851 Bougeault, P., 1981. Modeling the trade-wind cumulus boundary layer. Part I: Testing the ensemble cloud relations against numerical data. Journal of the Atmospheric Sciences, 38(11), 2414-2428. doi:10.1175/1520-0469(1981)038<2414:MTTWCB>2.0.CO;2 Chand, D., Wood, R., Ghan, S. J., Wang, M., Ovchinnikov, M., Rasch, P. J., Miller, S., Schichtel, B., Moore, T., 2012. Aerosol optical depth increase in partly cloudy conditions. Journal of Geophysical Research, 117(D17), 17,207. Ceppi, P., Brient, F., Zelinka, M. D., Hartmann, D. L., 2017. Cloud feedback mechanisms and their representation in global climate models. Wiley Interdisciplinary Reviews: Climate Change, 8(4), e465. doi:https://doi.org/10.1002/wcc.465 Chen, J.-P., 1994. Predictions of saturation ratio for cloud microphysical models. Journal of the Atmospheric Sciences, 51(10), 1332-1338. doi:10.1175/1520-0469(1994)051<1332:POSRFC>2.0.CO;2 Chen, S., Dudhia, J., 2000. Annual report: WRF physics. Air Force Weather Agency, 38. Chosson, F., Vaillancourt, P. A., Milbrandt, J. A., Yau, M., Zadra, A., 2014. Adapting two-moment microphysics schemes across model resolutions: Subgrid cloud and precipitation fraction and microphysical sub–time step. Journal of the Atmospheric Sciences, 71(7), 2635-2653. doi:10.1175/JAS-D-13-0367.1 Cotton, W. R., Bryan, G., van den Heever, S. C., 2011. Storm and cloud dynamics—The dynamics of clouds and precipitating mesoscale systems, International Geophysics (Vol. 99). New York: Elsevier. https://doi.org/10.1016/S0074-6142(10)09918-3 Cusack, S., Edwards, J., Kershaw, R., 1999. Estimating the subgrid variance of saturation, and its parametrization for use in a GCM cloud scheme. Quarterly Journal of the Royal Meteorological Society, 125(560), 3057-3076. doi:10.1002/qj.49712556013 Dai, A., 2006. Precipitation characteristics in eighteen coupled climate models. Journal of Climate, 19(18), 4605–4630. https://doi.org/10.1175/JCLI3884.1 Doelling, D. R., N. G. Loeb, D. F. Keyes, M. L. Nordeen, D. Morstad, C. Nguyen, B. A. Wielicki, D. F. Young, M. Sun, 2013: Geostationary Enhanced Temporal Interpolation for CERES Flux Products, Journal of Atmospheric and Oceanic Technology, 30(6), 1072-1090. doi: 10.1175/JTECH-D-12-00136.1. Doelling, D. R., M. Sun, L. T. Nguyen, M. L. Nordeen, C. O. Haney, D. F. Keyes, P. E. Mlynczak, 2016: Advances in Geostationary-Derived Longwave Fluxes for the CERES Synoptic (SYN1deg) Product, Journal of Atmospheric and Oceanic Technology, 33(3), 503-521. doi: 10.1175/JTECH-D-15-0147.1 Dutta, U., Hazra, A., Chaudhari, H. S., Saha, S. K., Pokhrel, S., Shiu, C.-J., Chen, J.-P. 2021: Role of microphysics and convective autoconversion for the better simulation of tropical intraseasonal oscillations (MISO and MJO). Journal of Advances in Modeling Earth Systems, 13, e2021MS002540. doi: https://doi.org/10.1029/2021MS002540 Edwards, P. N., 2010. A Vast Machine: Computer Models, Climate Data, and The Politics of Global Warming. MIT Press, 552 pp. Fowler, L. D., Randall, D. A., Rutledge, S. A., 1996. Liquid and ice cloud microphysics in the CSU general circulation model. Part 1: Model description and simulated microphysical processes. Journal of Climate, 9(3), 489-529. Fukuta, N., 1993. Water supersaturation in convective clouds. Atmospheric research, 30(2-3), 105-126. doi:10.1016/0169-8095(93)90043-N Fukuta, N., Xu, N., 1996. Nucleation-droplet growth interactions and microphysical property development in convective clouds. Atmospheric research, 41(1), 1-22. doi:10.1016/0169-8095(95)00071-2 Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A., . . . Li, J. L., 2010. Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. Journal of Geophysical Research: Atmospheres, 115(D18). doi:10.1029/2009JD013797 Golaz, J.-C., Larson, V. E., Cotton, W. R., 2002. A PDF-based model for boundary layer clouds. Part I: Method and model description. Journal of the Atmospheric Sciences, 59(24), 3540-3551. doi:https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2 Golaz, J.-C., Salzmann, M., Donner, L. J., Horowitz, L. W., Ming, Y., Zhao, M., 2011. Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. Journal of Climate, 24(13), 3145-3160. doi:10.1175/2010JCLI3945.1 Grabowski, W. W., 1989. Numerical experiments on the dynamics of the cloud–environment interface: Small cumulus in a shear-free environment. Journal of the Atmospheric Sciences, 46(23), 3513-3541. doi:10.1175/1520-0469(1989)046<3513:NEOTDO>2.0.CO;2 Grabowski, W. W., Morrison, H., 2017. Modeling condensation in deep convection. Journal of the Atmospheric Sciences, 74(7), 2247-2267. doi:10.1175/JAS-D-16-0255.1 Hashimoto, A., Murakami, M., Kato, T., Nakamura, M., 2007. Evaluation of the influence of saturation adjustment with respect to ice on meso-scale model simulations for the case of 22 June, 2002. SOLA 3, 85–88. https://doi.org/10.2151/sola.2007-022. Hong, S.-Y., Juang, H.-M. H., Zhao, Q., 1998. Implementation of prognostic cloud scheme for a regional spectral model. Monthly Weather Review, 126(10), 2621-2639. doi:10.1175/1520-0493(1998)126<2621:IOPCSF>2.0.CO;2 Hong, S.-Y., Sunny Lim, K.-S., Kim, J.-H., Jade Lim, J.-O., Dudhia, J., 2009. Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. Journal of applied meteorology and climatology, 48(1), 61-76. doi:10.1175/2008JAMC1960.1 Hoose, C., Kristjánsson, J., Arabas, S., Boers, R., Pawlowska, H., Puygrenier, V., Thouron, O., 2010. Parametrization of in-cloud vertical velocities for cloud droplet activation in coarse-grid models: Analyses of observations and cloud resolving model results, no. 6.4 in the 13th AMS Conference on Cloud Physics, AMS, 2010. Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., et al., 2017. The art and science of climate model tuning. Bulletin of the American Meteorological Society, 98, 589–602. https://doi.org/10.1175/BAMS-D-15-00135.1 Kay, J. E., Gettelman, A., 2009. Cloud influence on and response to seasonal Arctic sea ice loss. Journal of Geophysical Research: Atmospheres, 114(D18). doi:10.1029/2009JD011773 Khvorostyanov, V. I., 1995. Mesoscale processes of cloud formation, cloud-radiation interaction, and their modelling with explicit cloud microphysics. Atmospheric research, 39(1-3), 1-67. doi:10.1016/0169-8095(95)00012-G Khvorostyanov, V. I., Sassen, K., 1998. Cirrus cloud simulation using explicit microphysics and radiation. Part II: Microphysics, vapor and ice mass budgets, and optical and radiative properties. Journal of the Atmospheric Sciences, 55(10), 1822-1845. doi:10.1175/1520-0469(1998)055<1822:CCSUEM>2.0.CO;2 Kogan, Y. L., Martin, W. J., 1994. Parameterization of bulk condensation in numerical cloud models. Journal of the Atmospheric Sciences, 51(12), 1728-1739. doi:10.1175/1520-0469(1994)051<1728:POBCIN>2.0.CO;2 Köhler, H., 1950. On the Problem of Condensation in the Atmosphere. Nova Acta Regiae Soc. Sci. Upsaliensis [4] 14, 9. Komurcu, M., Storelvmo, T., Tan, I., Lohmann, U., Yun, Y., Penner, J. E., . . . Takemura, T., 2014. Intercomparison of the cloud water phase among global climate models. Journal of Geophysical Research: Atmospheres, 119(6), 3372-3400. doi:10.1002/2013JD021119 Korolev, A., 2007. Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. Journal of the Atmospheric Sciences, 64(9), 3372-3375. doi:10.1175/JAS4035.1 Korolev, A., Field, P. R., 2008. The effect of dynamics on mixed-phase clouds: Theoretical considerations. Journal of the Atmospheric Sciences, 65(1), 66-86. doi:10.1175/2007JAS2355.1 Korolev, A., McFarquhar, G., Field, P., Franklin, C., Lawson, P., Wang, Z., . . . Crosier, J., 2017. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges. Chapter 5: Mixed-phase clouds: progress and challenges. Meteorological Monographs, 58, 5.1-5.50. doi:10.1175/AMSMONOGRAPHS-D-17-0001.1 Korolev, A. V., Mazin, I. P., 2003. Supersaturation of water vapor in clouds. Journal of the Atmospheric Sciences, 60(24), 2957-2974. doi:10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2 LeTrent, H., Li, Z.-X., 1991. Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dynamics, 5(3), 175-187. Lebo, Z., Morrison, H., Seinfeld, J., 2012. Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmospheric Chemistry and Physics, 12(20), 9941-9964. doi:10.5194/acp-12-9941-2012 Lee, W. L., and Coauthors, 2020. Taiwan Earth System Model version 1: Description and evaluation of mean state. Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020. Liu, X., Penner, J. E., Ghan, S. J., Wang, M., 2007. Inclusion of ice microphysics in the NCAR Community Atmospheric Model version 3 (CAM3). Journal of Climate, 20(18), 4526-4547. doi:10.1175/JCLI4264.1 Lynch, P., 2008. The origins of computer weather pre¬diction and climate modeling. J. Comput. Phys., 227, 3431–3444, doi:10.1016/j.jcp.2007.02.034. Malavelle, F. F., Haywood, J. M., Field, P. R., Hill, A. A., Abel, S. J., Lock, A. P., . . . McBeath, K., 2014. A method to represent subgrid‐scale updraft velocity in kilometer‐scale models: Implication for aerosol activation. Journal of Geophysical Research: Atmospheres, 119(7), 4149-4173. Mather, J. H., McFarlane, S. A., Miller, M. A., Johnson, K. L., 2007. Cloud properties and associated radiative heating rates in the tropical western Pacific. Journal of Geophysical Research: Atmospheres, 112(D5). doi:10.1029/2006JD007555 May, P. T., Mather, J. H., Vaughan, G., Jakob, C., McFarquhar, G. M., Bower, K. N., Mace, G. G., 2008. The tropical warm pool international cloud experiment. Bulletin of the American Meteorological Society, 89(5), 629-646. doi:10.1175/BAMS-89-5-629 Morrison, H., Curry, J., Khvorostyanov, V., 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. Journal of the Atmospheric Sciences, 62(6), 1665-1677. doi:10.1175/JAS3446.1 Morrison, H., Gettelman, A., 2008. A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate, 21(15), 3642-3659. doi:10.1175/2008JCLI2105.1 Nenes, A., Seinfeld, J. H., 2003. Parameterization of cloud droplet formation in global climate models. Journal of Geophysical Research: Atmospheres, 108(D14). doi:10.1029/2002JD002911 Nishizawa, K., 2000. Parameterization of Nonconvective Condensation for Low-Resolution Climate Models. Journal of the Meteorological Society of Japan. Ser. II, 78(1), 1-12. doi:10.2151/jmsj1965.78.1_1 Noh, Y.-J., Seaman, C. J., Vonder Haar, T. H., Liu, G., 2013. In situ aircraft measurements of the vertical distribution of liquid and ice water content in midlatitude mixed-phase clouds. Journal of applied meteorology and climatology, 52(1), 269-279. doi:10.1175/JAMC-D-11-0202.1 Park, R.-S., Chae, J.-H., Hong, S.-Y., 2016. A revised prognostic cloud fraction scheme in a global forecasting system. Monthly Weather Review, 144(3), 1219-1229. doi:10.1175/MWR-D-15-0273.1 Park, S., Bretherton, C. S., Rasch, P. J., 2014. Integrating cloud processes in the Community Atmosphere Model, version 5. Journal of Climate, 27(18), 6821-6856. doi:10.1175/JCLI-D-14-00087.1 Pi, C.-J., Chen, J.-P., 2021. Integrated cloud macro-and micro-physics schemes with kinetic treatment of condensation processes for global models. Atmospheric research, 261, 105745. doi:https://doi.org/10.1016/j.atmosres.2021.105745 Pruppacher, H., Klett, J., 1997. Microphysics of Clouds and Precipitation, Kluwer Acad. Morwell Mass. Quaas, J., 2012. Evaluating the “critical relative humidity” as a measure of subgrid‐scale variability of humidity in general circulation model cloud cover parameterizations using satellite data. Journal of Geophysical Research: Atmospheres, 117(D9). doi:10.1029/2012JD017495 Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., . . . Srinivasan, J., 2007. Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Chap climate models and their evaluation. Randel, D.L., T.H. Vonder Haar, M.A. Ringerud, G.L. Stephens, T.J. Greenwald, and C.L. Combs, July 1996. A New Global Water Vapor Dataset. Bull. Amer. Meteor. Soc., 77, 1233-1246. Rasch, P., Kristjánsson, J., 1998. A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. Journal of Climate, 11(7), 1587-1614. doi:10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2 Ricard, J., Royer, J., 1993. A statistical cloud scheme for use in an AGCM. Paper presented at the Annales Geophysicae. Rotstayn, L. D., 1997. A physically based scheme for the treatment of stratiform clouds and precipitation in large‐scale models. I: Description and evaluation of the microphysical processes. Quarterly Journal of the Royal Meteorological Society, 123(541), 1227-1282. doi:10.1002/qj.49712354106 Rotstayn, L. D., Ryan, B. F., Katzfey, J. J., 2000. A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Monthly Weather Review, 128(4), 1070-1088. doi:10.1175/1520-0493(2000)128<1070:ASFCOT>2.0.CO;2 Shimpo, A., Kanamitsu, M., Iacobellis, S. F., Hong, S.-Y., 2008. Comparison of four cloud schemes in simulating the seasonal mean field forced by the observed sea surface temperature. Monthly Weather Review, 136(7), 2557-2575. doi:10.1175/2007MWR2179.1 Slingo, J., 1987. The development and verification of a cloud prediction scheme for the ECMWF model. Quarterly Journal of the Royal Meteorological Society, 113(477), 899-927. doi:10.1002/qj.49711347710 Smith, R., 1990. A scheme for predicting layer clouds and their water content in a general circulation model. Quarterly Journal of the Royal Meteorological Society, 116(492), 435-460. doi:10.1002/qj.49711649210 Song, X., Zhang, G. J., 2011. Microphysics parameterization for convective clouds in a global climate model: Description and single‐column model tests. Journal of Geophysical Research: Atmospheres, 116(D2). doi:10.1029/2010JD014833 Squires, P., 1952. The growth of cloud drops by condensation. I. General characteristics. Australian Journal of Chemistry, 5(1), 59-86. doi:10.1071/CH9520059 Squires, P., 1958. The microstructure and colloidal stability of warm clouds: Part II—The causes of the variations in microstructure. Tellus, 10(2), 262-271. doi:10.1111/j.2153-490.1958.tb02012.x Stevens, B., Walko, R. L., Cotton, W. R., Feingold, G., 1996. The spurious production of cloud-edge supersaturations by Eulerian models. Monthly Weather Review, 124(5), 1034-1041. doi:10.1175/1520-0493(1996)124<1034:TSPOCE>2.0.CO;2 Stevens, B., Bony, S., 2013. What are climate models missing? Science, 340(6136), 1053-1054. doi:10.1126/science.1237554 Sundqvist, H., 1978. A parameterization scheme for non‐convective condensation including prediction of cloud water content. Quarterly Journal of the Royal Meteorological Society, 104(441), 677-690. doi:10.1002/qj.49710444110 Sundqvist, H., 1993. Parameterization of clouds in large-scale numerical models. In International Geophysics (Vol. 54, pp. 175-203): Elsevier. Sundqvist, H., Berge, E., Kristjánsson, J. E., 1989. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Monthly Weather Review, 117(8), 1641-1657. doi:10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2 Tan, I., Storelvmo, T., 2016. Sensitivity study on the influence of cloud microphysical parameters on mixed-phase cloud thermodynamic phase partitioning in CAM5. Journal of the Atmospheric Sciences, 73(2), 709-728. doi:10.1175/JAS-D-15-0152.1 Tao, W.-K., Simpson, J., McCumber, M., 1989. An ice-water saturation adjustment. Monthly Weather Review, 117(1), 231-235. doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2 Tao, W. K., Chen, J. P., Li, Z., Wang, C., Zhang, C., 2012. Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics, 50(2). doi:10.1029/2011RG000369 Teixeira, J., 2001. Cloud fraction and relative humidity in a prognostic cloud fraction scheme. Monthly Weather Review, 129(7), 1750-1753. doi:10.1175/1520-0493(2001)129<1750:CFARHI>2.0.CO;2 Tian, L., Curry, J. A., 1989. Cloud overlap statistics. Journal of Geophysical Research: Atmospheres, 94(D7), 9925-9935. doi:10.1029/JD094iD07p09925 Tiedtke, M., 1993. Representation of clouds in large-scale models. Monthly Weather Review, 121(11), 3040-3061. doi:10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2 Tompkins, A. M., 2002. A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. Journal of the Atmospheric Sciences, 59(12), 1917-1942. doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2 Tompkins, A. M., di Giuseppe, F., 2015. An interpretation of cloud overlap statistics. Journal of the Atmospheric Sciences, 72, 2877– 2889. doi: 10.1175/JAS-D-14-0278.1 Tonttila, J., Räisänen, P., Järvinen, H., 2013. Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5. 5-HAM2. Atmospheric Chemistry and Physics, 13(15). doi:10.5194/acp-13-7551-2013 Wang, Y., Fan, J., Zhang, R., Leung, L. R., Franklin, C., 2013. Improving bulk microphysics parameterizations in simulations of aerosol effects. Journal of Geophysical Research: Atmospheres, 118(11), 5361-5379. doi:10.1002/jgrd.50432 Wang, L. J., Chen, J. P., 2019. Efficient determination of cloud drop number concentration near the cloud base with parameterization based on fundamental theory and parcel model simulations. Journal of Geophysical Research: Atmospheres, 124(12), 6467-6483. doi:10.1029/2018JD029648 Wang, X., Liu, Y., Bao, Q., Wu, G., 2015. Comparisons of GCM cloud cover parameterizations with cloud-resolving model explicit simulations. Science China Earth Sciences, 58(4), 604-614. doi:10.1007/s11430-014-4989-y Wang, W., Liu, X., Xie, S., Boyle, J., McFarlane, S. A., 2009. Testing ice microphysics parameterizations in the NCAR community atmospheric model version 3 using tropical warm pool–International Cloud Experiment data. Journal of Geophysical Research: Atmospheres, 114(D14). doi:10.1029/2008JD011220 Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment, Bull. Amer. Meteor. Soc., 77, 853-868. doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2 Wilson, D. R., Ballard, S. P., 1999. A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quarterly Journal of the Royal Meteorological Society, 125(557), 1607-1636. doi:10.1002/qj.49712555707 Wilson, D. R., Bushell, A. C., Kerr‐Munslow, A. M., Price, J. D., Morcrette, C. J., 2008. PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 134(637), 2093-2107. doi:10.1002/qj.333 Wood, R., Field, P. R., 2000. Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. Journal of the Atmospheric Sciences, 57(12), 1888-1905. doi:10.1175/1520-0469(2000)057<1888:RBTWCW>2.0.CO;2 Xie, S., Hume, T., Jakob, C., Klein, S. A., McCoy, R. B., Zhang, M., 2010. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. Journal of Climate, 23(1), 57-79. doi:10.1175/2009JCLI3071.1 Xu, K.-M., Krueger, S. K., 1991. Evaluation of cloudiness parameterizations using a cumulus ensemble model. Monthly Weather Review, 119(2), 342-367. doi:10.1175/1520-0493(1991)119<0342:EOCPUA>2.0.CO;2 Xu, K.-M., Randall, D. A., 1996. A semiempirical cloudiness parameterization for use in climate models. Journal of the Atmospheric Sciences, 53(21), 3084-3102. doi:10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2 Yang, J., Wang, Z., Heymsfield, A. J., Luo, T. 2016. Liquid-ice mass partition in tropical maritime convective clouds. Journal of the Atmospheric Sciences. https://doi.org/10.1175/JAS-D-15-0145.1 Yoshida, R., Okamoto, H., Hagihara, Y., Ishimoto, H., 2010. Global analysis of cloud phase and ice crystal orientation from Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio. Journal of Geophysical Research: Atmospheres, 115(D4). doi:10.1029/2009JD012334 Young, K., Warren, A., 1992. A reexamination of the derivation of the equilibrium supersaturation curve for soluble particles. Journal of the Atmospheric Sciences, 49(13), 1138-1143. doi:10.1175/1520-0469(1992)049<1138:AROTDO>2.0.CO;2 Young, K. C., 1993. Effects of simplifications of the Köhler equation on the activation of CCN in an updraft. Journal of the Atmospheric Sciences, 50(14), 2314-2317. doi:10.1175/1520-0469(1993)050<2314:EOSOTK>2.0.CO;2 Zhang, M., Lin, W., Bretherton, C. S., Hack, J. J., Rasch, P. J., 2003. A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2). Journal of Geophysical Research: Atmospheres, 108(D1), ACL 10-11-ACL 10-11. doi:10.1029/2002JD002523 Zou, Y.-S., Fukuta, N., 1999. The effect of diffusion kinetics on the supersaturation in clouds. Atmospheric research, 52(1-2), 115-141. doi:10.1016/S0169-8095(99)00025-3 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79539 | - |
| dc.description.abstract | 氣候模式中有關層狀雲之處理分成巨觀與微物理兩個模組。巨觀物理過程主要處理雲量與水氣凝結成雲水的過程;微物理過程包含水氣、水、雨、冰、雪之間不同相態和粒子之轉換。受限於電腦計算資源的影響,氣候模式在處理網格點中的水氣含量時,一個積分時間步長約二十到四十分鐘,因此假設雲內的飽和度一直維持在剛好飽合的狀態,此方式被稱為飽和度調整。然而,該假設簡化許多和雲內過飽和度相關的過程,只能透過經驗式推估在不同的條件之下雲內的水氣含量。本研究提供由基本的物理理論所推導出動力凝結過程的方法(簡稱KCM),連結雲的巨觀與微觀物理模組。KCM可預報雲內的對水、對冰過飽和度或次飽和度,取代巨觀雲物理的飽和度調整假設,並透過質量成長方程式取代原本微觀雲物理中凝結水分配的診斷式,以合理計算冰、水共存時水氣相爭的白吉龍過程。KCM的計算上需要使用更精確的雲滴與冰晶的數量及粒徑,因此需要可以提供詳盡雲滴與冰晶粒子資訊的對流和雲微物理模組。而其所提供的雲內的飽和度,亦可提供用於診斷或預報雲滴的活化,或其他和雲內飽和度相關的過程,減少模式中受限於飽和度調整所產生的誤差。KCM將原本分別由不同參數化法所計算的物理過程整合至同一個簡單且具物理基礎的方法之中,做為巨觀物理模組和微物理模組的橋樑。 KCM被放入CESM地球系統模式中進行單點氣柱模擬以及全球模擬的測試。單點氣柱模擬結果顯示動力凝結方法對於雲內冰、水混合狀態有明顯的改善。以TWP–ICE個案為例,KCM雲內相對於水的過飽和度約為0.1%,相對於冰的過飽合度約為15%,且在適合的環境條件之下,在接近–40℃的高度有尚未結冰的過冷水。受到模式中水物和能量守恆的影響,氣柱模擬的結果增加對流降水的比例。 全球模式測試顯示,與觀測值相比,原始模式(簡稱CTRL)與KCM皆高估熱帶輻合帶和低估中緯度地區的雲量,總平均結果CTRL低估而KCM高估總雲量。KCM增加赤道與熱帶地區的高雲雲量,減少多數對流旺盛區域混合雲的雲量,增加熱帶海洋地區的低雲,總雲量高於觀測值;在模式未調校之前,雲量的估計較CTRL偏離觀測值。動力凝結過程因為改變了雲內的物理過程進而改變動力結構,透過部分減少對流降水或是增加層狀降水量,使得南、北緯30度以內的對流降水占總降水的比例,從原始模式的81.85%降低至75.49%,更接近平均觀測值54.20%;相反的,在南北半球溫帶地區,對流降水比例增加。但由於動力回饋過程而低估了好發於海洋東側、陸地西岸的低層海洋性層積雲。 初步測試結果顯示,針對KCM運用於全球模式的結果造成雲量高估以及液態水和冰光程量的不足,特別針對雲量參數法與降水效率係數進行調校。雲量參數法的部分,增加高層與減少低層的機率密度函數寬度,可有效的減少熱帶區域高雲過多的問題並增加低層雲量,讓模式結果較接近觀測值。針對降水效率,調降為0.1倍的對流及提高10倍的層狀雲水轉換成雨水的自動轉換係數的狀況之下,較多的液態水和冰存留在空中,大幅增加原本被低估的液態水和冰光程量。全球平均對流降水比例皆減少,其中熱帶地區原始模式與新發法的對流降水比例降至79.80%與72.79%。由於觀測與模擬結果的對流降水量相當,而模擬所得到的層狀降水量偏低,因此剩下的差異應從其他雲微物理過程著手改善。整體平均而言,全球平均觀測雲量為64.92%,原始模式與調校後的KCM平均雲量為66.83%和63.18%,經調校後的KCM模擬其對流降水比例和液態水和冰光程量更接近於觀測值。KCM在計算中受到粒子數量與半徑影響的特性,需要配合能提供此資訊的對流參數化法才能相得益彰,而KCM所提供雲內飽和度的資訊也可以利用在其他物理過程參數化的改良上。KCM為整合模式中的雲物理過程的目標踏出第一步。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:03:10Z (GMT). No. of bitstreams: 1 U0001-0802202209372200.pdf: 17262253 bytes, checksum: 1a65c6900459b889c225334a5e69c828 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 中文摘要 ii Abstract iv Table of Contents vi List of Figures viii List of Tables xv Chapter 1. Introduction 1 Chapter 2. Methodology 6 2.1 Cloud Fraction Parameterization 7 2.2 Prediction of In-cloud Saturation Ratio 11 2.3 Liquid−Ice Partition 16 2.4 Activation and Nucleation 17 2.5 The Architecture of the Kinetic Condensation Method 18 2.6 Observation Data 19 Chapter 3. Single–Column–Model Simulations 21 3.1 In-cloud Saturation Ratio 22 3.2 Condensation/Evaporation and Deposition/Sublimation 23 3.3 Condensed Water and Precipitation 25 3.4 Cloud Fraction 27 Chapter 4. Preliminary Global Model Tryout 29 4.1 Cloud Condensate Amount 29 4.2 Precipitation 33 4.3 Cloud Fraction 36 4.4 Radiation and Temperature 37 Chapter 5 Further Model Tuning 41 5.1 Uniform Distribution versus Triangular Distribution 41 5.2 Change the Width of the Probability Density Function 43 5.2.1 Total Condensates or Saturation Mixing Ratio 43 5.2.2 Critical Relative Humidity 44 5.3 Autoconversion 47 Chapter 6. Discussions 50 6.1 Liquid–ice Partition 50 6.1.1 Detrainment 51 6.1.2 Wegener–Bergeron–Findeisen Process 52 6.1.3 Saturation Adjustment in Microphysics Scheme 53 6.2 Cloud Fraction Parameterization 53 6.2.1 Shape of the Probability Density Function 53 6.2.2 Width of the Probability Density Function 54 6.3 Vertical Velocity for Predict Saturation Ratio 55 6.4 In-cloud Liquid and Ice Mixing Ratio Limitation 56 6.5 Activation and Nucleation Processes 58 6.5.1 Droplet Activation 58 6.5.2 Ice Nucleation 59 Chapter 7. Conclusion 61 References 65 Figures 79 Tables 132 Appendix 137 | |
| dc.language.iso | en | |
| dc.title | 以動力凝結程序整合全球氣候模式之巨觀與微觀雲物理方案 | zh_TW |
| dc.title | A Kinetic Treatment in Condensation Process for the Unification of Cloud Macro- and Micro-physics Schemes in Global Climate Models | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 隋中興(Sheng-Jung Ou),許晃雄(Chun-Yen Chang),陳正達(Hsi-Lin Liu),李威良(Hui-Mei Chen),吳健銘,陳維婷 | |
| dc.subject.keyword | 雲巨觀物理,雲微觀物理,混合態雲,飽和度,白吉龍過程, | zh_TW |
| dc.subject.keyword | cloud macrophysics,cloud microphysics,mixed-phase cloud,supersaturation,Wegener–Bergeron–Findeisen process, | en |
| dc.relation.page | 142 | |
| dc.identifier.doi | 10.6342/NTU202200361 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-10 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0802202209372200.pdf | 16.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
