Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79536
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林立虹(Li-Hung Lin)
dc.contributor.authorHsin-No Kuoen
dc.contributor.author郭欣諾zh_TW
dc.date.accessioned2022-11-23T09:03:05Z-
dc.date.available2023-09-24
dc.date.available2022-11-23T09:03:05Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-27
dc.identifier.citation王奕傑 (2019) 卑南溪流域化學風化作用對二氧化碳收支的影響,國立臺灣大學海洋研究所碩士論文,共98頁。 何春蓀 (1986) 《台灣地質概論-台灣地質圖說明書》,經濟部中央地質調查所,共169頁。 柯建仲、顧承宇(2016) 臺灣南段山區地下水資源調查計畫-臺灣南段山區地下水位觀測與水力特性調查(3/4),經濟部中央地質調查所。 陳文山 (2016) 《臺灣地質概論》。中華民國地質學會,共204頁。 陳沛壕(2017) 亞熱帶造山帶之化學風化及其控制因子,國立台灣大學地理環境資源學系碩士論文,共81頁。 張庭逢 (2016) 台灣北部地熱區低度變質岩之碳氮硫地球化學特徵,國立臺灣大學海洋研究所碩士論文,共56頁。 顏滄波、吳景祥、莊德永(1984) 台灣南部橫貫公路沿線之地質。經濟部中央地質調查所特刊,3號,11-23頁。 交通部水利署第八河川局。https://www.wra08.gov.tw/ 英文部分 Anderson, S. P., Dietrich, W. E. (2001). Chemical weathering and runoff chemistry in a steep headwater catchment. Hydrological Processes, 15(10), 1791-1815. Atangana, A. (2018). Chapter 2 - Principle of Groundwater Flow. In A. Atangana (Ed.), Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology (pp. 15-47). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-809670-3.00002-3 Banfield, J. F., Eggleton, R. A. (1990). Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays and Clay Minerals, 38(1), 77-89. Anderson, S. P., Dietrich, W. E. (2001). Chemical weathering and runoff chemistry in a steep headwater catchment. Hydrological Processes, 15(10), 1791-1815. Atangana, A. (2018). Chapter 2 - Principle of Groundwater Flow. In A. Atangana (Ed.), Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology (pp. 15-47). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-809670-3.00002-3 Banfield, J. F., Eggleton, R. A. (1990). Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays and Clay Minerals, 38(1), 77-89. Barton, C. (2002). Clay minerals. In: Rattan Lal, comp., ed. Encyclopedia of Soil Science. New York, New York: Marcel Dekker: 187-192. Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., Scibek, J. (2013). Fault zone hydrogeology. Earth-Science Reviews, 127, 171-192. https://doi.org/10.1016/j.earscirev.2013.09.008 Berner, R. A. (1992). Weathering, plants, and the long-term carbon cycle. Geochimica et Cosmochimica Acta, 56(8), 3225-3231. https://doi.org/https://doi.org/10.1016/0016-7037(92)90300-8 Berner, R. A. (2003). The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426(6964), 323-326. Blattmann, T. M., Wang, S. L., Lupker, M., Märki, L., Haghipour, N., Wacker, L., Chung, L. H., Bernasconi, S. M., Plötze, M., Eglinton, T. I. (2019). Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39272-5 Boggs Jr, S. (2014). Principles of sedimentology and stratigraphy. Pearson Education. Brady, P. V. (1991). The effect of silicate weathering on global temperature and atmospheric CO2. Journal of Geophysical Research: Solid Earth, 96(B11), 18101-18106. Brenot, A., Carignan, J., France-Lanord, C., Benoît, M. (2007). Geological and land use control on δ34S and δ18O of river dissolved sulfate: The Moselle river basin, France. Chemical Geology, 244(1), 25-41. https://doi.org/https://doi.org/10.1016/j.chemgeo.2007.06.003 Bufe, A., Hovius, N., Emberson, R., Rugenstein, J. K., Galy, A., Hassenruck-Gudipati, H. J., Chang, J.-M. (2021). Co-variation of silicate, carbonate and sulfide weathering drives CO 2 release with erosion. Nature Geoscience, 14(4), 211-216. Burke, A., Present, T. M., Paris, G., Rae, E. C. M., Sandilands, B. H., Gaillardet, J., Peucker-Ehrenbrink, B., Fischer, W. W., McClelland, J. W., Spencer, R. G. M., Voss, B. M., Adkins, J. F. (2018). Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Science Letters, 496, 168-177. https://doi.org/10.1016/j.epsl.2018.05.022 Calmels, D., Gaillardet, J., Brenot, A., France-Lanord, C. (2007). Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. Geology, 35(11), 1003-1006. Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A. J., Chen, M.-C., Chapman, H. (2011). Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303(1-2), 48-58. https://doi.org/10.1016/j.epsl.2010.12.032 Cao, Y., Tang, C., Song, X., Liu, C. (2015). Major ion chemistry, chemical weathering and CO2 consumption in the Songhua River basin, Northeast China. Environmental Earth Sciences, 73(11), 7505-7516. https://doi.org/10.1007/s12665-014-3921-2 Chamberlin, T. C. (1899). An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. The Journal of Geology, 7(6), 545-584. Chen, W.-S., Huang, Y.-C., Liu, C.-H., Feng, H.-T., Chung, S.-L., Lee, Y.-H. (2016). UPb zircon geochronology constraints on the ages of the Tananao Schist Belt and timing of orogenic events in Taiwan: Implications for a new tectonic evolution of the South China Block during the Mesozoic. Tectonophysics, 686, 68-81. https://doi.org/https://doi.org/10.1016/j.tecto.2016.07.021 Chen, W. S., Chung, S. L., Chou, H. Y., Zugeerbai, Z., Shao, W. Y., Lee, Y. H. (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle‐late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188-206. Chigira, M. (1992). Long-term gravitational deformation of rocks by mass rock creep. Engineering Geology, 32(3), 157-184. https://doi.org/https://doi.org/10.1016/0013-7952(92)90043-X Chigira, M., Oyama, T. (2000). Mechanism and effect of chemical weathering of sedimentary rocks. In Y. Kanaori, K. Tanaka, M. Chigira (Eds.), Developments in Geotechnical Engineering (Vol. 84, pp. 267-278). Elsevier. https://doi.org/https://doi.org/10.1016/S0165-1250(00)80022-X Chung, C.-H., You, C.-F., Chu, H.-Y. (2009). Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76(4), 433-443. Cortecci, G., Dinelli, E., Bencini, A., Adorni-Braccesi, A., La Ruffa, G. (2002). Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Applied Geochemistry, 17(2), 79-92. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D., Lin, J.-C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. https://doi.org/10.1038/nature02150 Das, A., Chung, C.-H., You, C.-F. (2012). Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophysical Research Letters, 39(12), n/a-n/a. https://doi.org/10.1029/2012gl051549 Dayal, A. M., Mani, D. (2017). Chapter 5 - Exploration Technique. In A. M. Dayal D. Mani (Eds.), Shale Gas (pp. 65-93). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809573-7.00005-6 Domenico, P. A., Schwartz, F. W. (1998). Physical and chemical hydrogeology (Vol. 506). Wiley New York. Emberson, R., Hovius, N., Galy, A., Marc, O. (2016a). Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding. Nature Geoscience, 9(1), 42-45. https://doi.org/10.1038/ngeo2600 Emberson, R., Hovius, N., Galy, A., Marc, O. (2016b). Oxidation of sulfides and rapid weathering in recent landslides. Earth Surface Dynamics, 4(3), 727-742. https://doi.org/10.5194/esurf-4-727-2016 Ernst, W., Jahn, B. (1987). Crustal accretion and metamorphism in Taiwan, a post-Palaeozoic mobile belt. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 321(1557), 129-161. Ezoe, Y., Lin, C.-H., Noto, M., Watanabe, Y., Yoshimura, K. (2002). Evolution of water chemistry in natural acidic environments in Yangmingshan, Taiwan. Journal of Environmental Monitoring, 4(4), 533-540. Gaillardet, J., Calmels, D., Romero-Mujalli, G., Zakharova, E., Hartmann, J. (2019). Global climate control on carbonate weathering intensity. Chemical Geology, 527, 118762. https://doi.org/https://doi.org/10.1016/j.chemgeo.2018.05.009 Gaillardet, J., Dupré, B., Louvat, P., Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1), 3-30. https://doi.org/https://doi.org/10.1016/S0009-2541(99)00031-5 Garrels, R. M. (1983). The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283, 641-683. Goldberg, T., Poulton, S. W., Strauss, H. (2005). Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution. Precambrian Research, 137(3), 223-241. https://doi.org/https://doi.org/10.1016/j.precamres.2005.03.003 Goldich, S. S. (1938). A study in rock-weathering. The Journal of Geology, 46(1), 17-58. Goldsmith, S. (2009). Physical and Chemical Weathering Processes and Associated CO 2 Consumption from Small Mountainous Rivers on High-Standing Islands. Gu, X., Rempe, D. M., Dietrich, W. E., West, A. J., Lin, T.-C., Jin, L., Brantley, S. L. (2020). Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate. Geochimica et Cosmochimica Acta, 269, 63-100. https://doi.org/https://doi.org/10.1016/j.gca.2019.09.044 Hilton, R. G., West, A. J. (2020). Mountains, erosion and the carbon cycle. Nature Reviews Earth Environment, 1(6), 284-299. https://doi.org/10.1038/s43017-020-0058-6 Ho, G.-R., Lo, W. (2015). Structural Analysis in Shoufengsi Area of Tananao Complex, Eastern Taiwan. Terrestrial, Atmospheric Oceanic Sciences, 26(5). Hoefs, J. (2018). Stable Isotope Geochemistry. https://doi.org/https://doi.org/10.1007/978-3-319-78527-1 Hong, Y., Hiura, H., Shino, K., Sassa, K., Suemine, A., Fukuoka, H., Wang, G. (2005). The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides, 2(2), 97-105. https://doi.org/10.1007/s10346-004-0043-z Hsieh, H.-H., Lee, C.-H., Ting, C.-S., Chen, J.-W. (2010). Infiltration mechanism simulation of artificial groundwater recharge: a case study at Pingtung Plain, Taiwan. Environmental Earth Sciences, 60(7), 1353-1360. Joos, F., Spahni, R. (2008). Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proceedings of the National Academy of Sciences, 105(5), 1425-1430. Kump, L. R., Brantley, S. L., Arthur, M. A. (2000). Chemical weathering, atmospheric CO2, and climate. Annual Review of Earth and Planetary Sciences, 28(1), 611-667. Lasaga, A. C. (1984). Chemical kinetics of water‐rock interactions. Journal of Geophysical Research: Solid Earth, 89(B6), 4009-4025. Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E., Nagy, K. L. (1994). Chemical weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta, 58(10), 2361-2386. https://doi.org/https://doi.org/10.1016/0016-7037(94)90016-7 Li, X.-D., Liu, C.-Q., Liu, X.-L., Bao, L.-R. (2011). Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using dual-isotopic data from the Jialing River, Southwest China. Journal of Asian Earth Sciences, 42(3), 370-380. https://doi.org/https://doi.org/10.1016/j.jseaes.2011.06.002 Ling, S., Wu, X., Sun, C., Liao, X., Ren, Y., Li, X. (2016). Mineralogy and geochemistry of three weathered Lower Cambrian black shale profiles in Northeast Chongqing, China. Geosciences Journal, 20(6), 793-812. Liu, Y., Nie, F., Jiang, S., Bagas, L., Xiao, W., Cao, Y. (2016). Geology, geochronology and sulphur isotope geochemistry of the black schist-hosted Haoyaoerhudong gold deposit of Inner Mongolia, China: Implications for ore genesis. Ore Geology Reviews, 73, 253-269. https://doi.org/https://doi.org/10.1016/j.oregeorev.2014.12.020 Maison, T., Potel, S., Malié, P., Ferreiro Mählmann, R., Chanier, F., Mahieux, G., Bailleul, J. (2019). Low-grade evolution of clay minerals and organic matter in fault zones of the Hikurangi prism (New Zealand). Clay Minerals, 53(4), 579-602. https://doi.org/10.1180/clm.2018.46 Marini, L. (2007). Chapter 7 - Reaction Path Modelling of Geological CO2 Sequestration. In L. Marini (Ed.), Developments in Geochemistry (Vol. 11, pp. 319-409). Elsevier. https://doi.org/https://doi.org/10.1016/S0921-3198(06)80027-X Matsuzawa, M., Chigira, M. (2020). Weathering mechanism of arenite sandstone with sparse calcite cement content. CATENA, 187. https://doi.org/10.1016/j.catena.2019.104367 Meunier, A., Velde, B., Velde, B. (2004). Illite: Origins, evolution and metamorphism. Springer Science Business Media. Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5), 401-428. Meyer, K. J., Carey, A. E., You, C.-F. (2017). Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan. Geochimica et Cosmochimica Acta, 215, 404-420. https://doi.org/https://doi.org/10.1016/j.gca.2017.07.015 Miao, Z., Brusseau, M., Carroll, K. C., Carreón-Diazconti, C., Johnson, B. (2012). Sulfate reduction in groundwater: characterization and applications for remediation. Environmental geochemistry and health, 34(4), 539-550. Mysen, B. (2019). Nitrogen in the Earth: abundance and transport. Progress in Earth and Planetary Science, 6(1), 38. https://doi.org/10.1186/s40645-019-0286-x Nesbitt, H. W., Markovics, G. (1980). Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11), 1659-1666. Nesbitt, H. W., Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523-1534. https://doi.org/https://doi.org/10.1016/0016-7037(84)90408-3 Ntarlagiannis, D., Williams, K. H., Slater, L., Hubbard, S. (2005). Low‐frequency electrical response to microbial induced sulfide precipitation. Journal of Geophysical Research: Biogeosciences, 110(G2). Ollivier, P., Hamelin, B., Radakovitch, O. (2010). Seasonal variations of physical and chemical erosion: A three-year survey of the Rhone River (France). Geochimica et Cosmochimica Acta, 74(3), 907-927. https://doi.org/https://doi.org/10.1016/j.gca.2009.10.037 Owen, R., Maziti, A., Dahlin, T. (2007). The relationship between regional stress field, fracture orientation and depth of weathering and implications for groundwater prospecting in crystalline rocks. Hydrogeology Journal, 15(7), 1231-1238. https://doi.org/10.1007/s10040-007-0224-7 Peltier, E., Ilipilla, P., Fowle, D. (2011). Structure and reactivity of zinc sulfide precipitates formed in the presence of sulfate-reducing bacteria. Applied Geochemistry, 26(9-10), 1673-1680. Place, J., Géraud, Y., Diraison, M., Herquel, G., Edel, J. B., Bano, M., Le Garzic, E., Walter, B. (2016). Structural control of weathering processes within exhumed granitoids: Compartmentalisation of geophysical properties by faults and fractures. Journal of Structural Geology, 84, 102-119. https://doi.org/https://doi.org/10.1016/j.jsg.2015.11.011 Raymo, M. E., Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117-122. https://doi.org/10.1038/359117a0 Raymo, M. E., Ruddiman, W. F., Froelich, P. N. (1988). Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16(7), 649-653. https://doi.org/10.1130/0091-7613(1988)016<0649:IOLCMB>2.3.CO;2 Robinson, B. W., Bottrell, S. H. (1997). Discrimination of sulfur sources in pristine and polluted New Zealand river catchments using stable isotopes. Applied Geochemistry, 12(3), 305-319. Soden, A., Shipton, Z., Lunn, R., Pytharouli, S., Kirkpatrick, J., Do Nascimento, A., Bezerra, F. (2014). Brittle structures focused on subtle crustal heterogeneities: implications for flow in fractured rocks. Journal of the Geological Society, 171(4), 509-524. Soler, A., Canals, A., Goldstein, S., Otero, N., Antich, N., Spangenberg, J. (2002). Sulfur and strontium isotope composition of the Llobregat River (NE Spain): tracers of natural and anthropogenic chemicals in stream waters. Water, Air, and Soil Pollution, 136(1), 207-224. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. Sun, H., Han, J., Li, D., Zhang, S., Lu, X. (2010). Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Science of the total environment, 408(20), 4749-4760. Taylor, R., Howard, K. (2000). A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeology Journal, 8(3), 279-294. Torres, M. A., West, A. J., Li, G. (2014). Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature, 507(7492), 346-349. https://doi.org/10.1038/nature13030 Tostevin, R., Craw, D., Van Hale, R., Vaughan, M. (2016). Sources of environmental sulfur in the groundwater system, southern New Zealand. Applied Geochemistry, 70, 1-16. https://doi.org/https://doi.org/10.1016/j.apgeochem.2016.05.005 Turner, B. F., White, A. F., Brantley, S. L. (2010). Effects of temperature on silicate weathering: Solute fluxes and chemical weathering in a temperate rain forest watershed, Jamieson Creek, British Columbia. Chemical Geology, 269(1-2), 62-78. https://doi.org/10.1016/j.chemgeo.2009.09.005 West, A. J., Galy, A., Bickle, M. (2005). Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1), 211-228. https://doi.org/https://doi.org/10.1016/j.epsl.2005.03.020 White, A. F., Blum, A. E. (1995). Effects of climate on chemical_ weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9), 1729-1747. https://doi.org/https://doi.org/10.1016/0016-7037(95)00078-E White, A. F., Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chemical Geology, 202(3), 479-506. https://doi.org/https://doi.org/10.1016/j.chemgeo.2003.03.001 Yamasaki, S., Chigira, M. (2011). Weathering mechanisms and their effects on landsliding in pelitic schist. Earth Surface Processes and Landforms, 36(4), 481-494. https://doi.org/10.1002/esp.2067 Zheng, G., Shouyun, L., Yuhua, L., Xiangxian, M., Mingliang, L., Wei, X. (2010). Pyrite in sliding mud: A potential indicator of landslide development. Journal of Earth Science, 21(6), 954-960. https://doi.org/10.1007/s12583-010-0148-3 National Oceanic Atmospheric Administration Earth System Research Laboratory. https://www.esrl.noaa.gov/ GlobalMonitoringLaboratory:https://gml.noaa.gov/ccgg/trends/global.html https://www.agilent.com/cs/library/applications/5990-6195EN.pdf https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79536-
dc.description.abstract化學風化為岩石與水的交互作用,得以調節大氣二氧化碳含量。過去關於化學風化的研究主要聚焦於大河系統,透過量測河水的溶質濃度,建立流域尺度的化學風化速率,並探討氣候條件與岩性分布對風化速率的影響。除了近地表環境外,化學風化作用亦可能藉由地表水流經裂隙或破裂帶入滲,與地下岩石反應。然而透過河水反推的風化機制並無法解析風化作用進行的確實位置,更鮮有研究探討以變質岩為主之活動造山帶地下化學風化作用。 有鑑於此,本研究藉由大崙溪流域鑽取的岩心,探討於造山帶、片岩為主體的小河流域之地下化學風化作用。透過岩心產狀得知,由淺至深依序為地表至10公尺深的土壤與崩積層、10至60公尺區段屬黑色片岩夾雜多處厚度不等、破碎、未膠結、粒徑不一的岩屑構成的破碎帶、60公尺以下為緻密基岩,綠色或矽質片岩為主。元素分析顯示破碎帶的總有機碳含量高於基岩;總硫含量變異度較基岩大。淋溶實驗溶質分析顯示所有樣本最主要的陰離子成分都是SO42-,破碎帶樣本濃度範圍為0.6至21.2 μmol g-1,統計結果高於相鄰基岩產率(0.1至9.9 μmol g-1)。破碎帶與基岩的淋溶產生的陽離子組成有顯著差異,Ca2+與Na+分別為其主要陽離子,淋溶離子的莫耳比例差異與風化途徑緊密相關。由Ca2+/Na+ 和Mg2+/Na+ 的關係圖顯示,基岩產生的溶質多集中於矽酸鹽礦物風化的端成分,而破碎帶淋溶得到的溶質則介於矽酸鹽礦物與碳酸鹽礦物的端成分間;大崙溪流域的地下岩層風化產生的SO42-總通量估計為7.44×104至3.82×107 mol yr-1,單位面積最大輸出通量可高於平均世界大河流域1個數量級。綜合上述,本研究推測大崙溪地下的風化作用主要由黃鐵礦氧化產生的硫酸根所驅動,因廣泛分布於地層的破碎帶,增加礦物與地下水的反應面積,加速風化的進行,導致CO2的淨排放,並影響碳循環的收支。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:03:05Z (GMT). No. of bitstreams: 1
U0001-2409202100503400.pdf: 4052846 bytes, checksum: 5cd089bd6dbd23b49179e79bed7320be (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 ix 第一章、研究動機 1 1.1 影響碳循環收支之因素 1 1.2 化學風化對於地質碳循環之重要性 2 1.3調控化學風化作用之條件 5 1.4台灣高山小河流域化學風化重要特徵 10 1.5研究目標 12 第二章、研究地點與分析方法 15 2.1 研究區域概況 15 2.2 採樣方法 18 2.2.1未固結土壤、崩積層、破碎帶之樣本處理 18 2.2.2緻密基岩樣本處理 19 2.3 實驗分析方法 19 2.3.1 元素豐度分析 19 2.3.2 陰離子分析 20 2.3.3 陽離子分析 21 2.3.4 硫同位素組成分析 21 2.3.5 礦物相分析 22 第三章、研究結果 24 3.1岩心描述 24 3.2樣本間碳氫硫元素含量 28 3.3淋溶溶液陰、陽離子組成 36 3.4 硫同位素組成 45 3.5 XRD礦物相分析結果 45 第四章、討論 49 4.1 礦物與元素變化 50 4.1.1 元素豐度於樣本種類間的變化 50 4.1.2 礦物相變化 55 4.2 地下硫酸根可能來源 57 4.3 大崙流域岩心孔隙水風化特徵 60 4.3.1淋溶溶液離子變化趨勢 60 4.3.2 大崙井場主要無機酸種類與風化特性 67 4.4大崙地區的風化通量估算 73 第五章、結論 77 參考文獻 78 附錄 86
dc.language.isozh-TW
dc.title大崙溪流域地下變質岩層破碎帶之化學風化作用zh_TW
dc.titleChemical weathering in subsurface fractured metamorphic rocks in the Dalun river catchmenten
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王珮玲(Hsin-Tsai Liu),邱永嘉(Chih-Yang Tseng),傅慶州
dc.subject.keyword大崙溪,風化作用,硫酸根,破碎帶,變質岩,zh_TW
dc.subject.keywordDalun river,weathering,sulfate,fractured zone,metamorphic rock,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202103333
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2023-09-24-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-2409202100503400.pdf3.96 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved