請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79527完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾嘉綾(Chia-Lin Chung) | |
| dc.contributor.author | Ting-Zhi Liao | en |
| dc.contributor.author | 廖庭芝 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:02:50Z | - |
| dc.date.available | 2026-09-29 | |
| dc.date.available | 2022-11-23T09:02:50Z | - |
| dc.date.copyright | 2021-10-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-29 | |
| dc.identifier.citation | 王庭碩、董景生、楊恩誠、楊曼妙。2011。以樹幹注射法防治老樹之刺桐釉小蜂。台灣昆蟲 31:281-286。 伍秀菁、汪若文、林美吟。1998。儀器總覽-化學分析儀器。初版。行政院國家科學委員會精密儀器發展中心。新竹市。145頁。 安寶貞。1999。Phellinus noxius引起果樹及觀賞植物褐根病之調查。植物病理學會刊 8:51-60。 吳孟玲、徐孟豪、劉則言。2020。樹木褐根病診斷及防治建議手冊。行政院農業委員會林務局 林業試驗所。臺北市。34頁。 吳孟玲、許育晏、李芷芸、吳厚德、洪挺軒。2014。微生物製劑在褐根病防治管理之應用研究。台灣林業科學 29:41-53。 李承先、張東柱、傅春旭、王光仁。2011。樹木褐根病在台灣10個縣市的發生現況。台灣林業 37:34-39。 周昊。2018。木黴菌防治樹木褐根病之探討。碩士論文。國立臺灣大學。臺北市。 林木疫情鑑定與資訊中心。2021。危害統計表。行政院農業委員會林業試驗所。網址:https://health.tfri.gov.tw/fhsnc/statisdiseasename。上網日期:2020-07-19。 許如君。2021。農藥這樣選就對了-安全性管理必備手冊2021。五南圖書出版社。臺北市。135頁。 梁臻穎。2018。颱風造成臺北地區樹木風倒害因及其管理之研究。碩士論文。國立臺灣大學。臺北市。 曾德賜。2015。農藥藥理與應用:殺菌劑。藝軒圖書出版社。臺中市。151頁。 詹舜安、劉宗榮。2002。液相層析串聯式質譜儀之原理及應用。科儀新知 24:77-89。 蔡志濃、安寶貞、謝文瑞。2005。抑制褐根病菌、白紋羽菌及南方靈芝菌之化學藥劑篩選。植物病理學會刊 14:115-124。 蔡志濃、謝文瑞、安寶貞。2008。氮肥與化學藥劑對果樹褐根病菌之影響與田間病害防治。植物病理學會刊 17:119-126。 蔡志濃、安寶貞、謝文瑞。2010。褐根病之發生、診斷鑑定及防治。近年來我國重大作物病害之發生及其診斷、監測與防治研討會專刊 149:47-163。 蔡志濃、鄭秀芳、蔡惠玲、黃鴻章、謝文瑞、安寶貞。2013。利用薄膜培養基法檢測褐根病菌分泌之生體外分解酵素。台灣農業研究 62:184-194。 Akiba, M., Ota, Y., Tsai, I. J., Hattori, T., Sahashi, N., and Kikuchi, T. 2015. Genetic differentiation and spatial structure of Phellinus noxius, the causal agent of brown root rot of woody plants in Japan. PLoS ONE 10:e0141792. Ann, P. J., Chang, T. T., and Ko, W. H. 2002. Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Disease 86:820-826. Augusto, J., and Brenneman, T. B. 2012. Assessing systemicity of peanut fungicides through bioassay of plant tissues with Sclerotium rolfsii. Plant Disease 96:330-337. Baibakova, E. V., Nefedjeva, E. E., Suska-Malawska, M., Wilk, M., Sevriukova, G. A., and Zheltobriukhov, V. F. 2019. Modern fungicides: mechanisms of action, fungal resistance and phytotoxic effects. Annual Research Review in Biology:1-16. Berger, C., and Laurent, F. 2019. Trunk injection of plant protection products to protect trees from pests and diseases. Crop Protection 124:104831. Bolland, L. 1984. Phellinus noxius: cause of a significant root-rot in Queensland hoop pine plantations. Australian Forestry 47:2-10. Bromilow, R. H., Chamberlain, K., and Patil, S. G. 1990a. A rapid method using Ricinus communis for the estimation of phloem translocation of xenobiotics. Pesticide Science 30:1-12. Bromilow, R. H., Chamberlain, K., and Evans, A. A. 1990b. Physicochemical aspects of phloem translocation of herbicides. Weed Science 38:305-314. Burken, J. G., and Schnoor, J. L. 1998. Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environmental Science Technology 32:3379-3385. CABI. 2020. Phellinus noxius (brown tea root disease). in: Invasive Species Compendium CAB International, Wallingford, UK. Available at: https://www.cabi.org/isc/datasheet/40154#top-page [Accessed March 12, 2021]. Carrus, G., Scopelliti, M., Lafortezza, R., Colangelo, G., Ferrini, F., Salbitano, F., Agrimi, M., Portoghesi, L., Semenzato, P., and Sanesi, G. 2015. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landscape and Urban Planning 134:221-228. Chang, T. T. 1996. Survival of Phellinus noxius in soil and in the roots of dead host plants. Phytopathology 86:272-276. Chou, H., Xiao, Y. T., Tsai, J. N., Li, T. T., Wu, H. Y., Liu, L. D., Tzeng, D. S., and Chung, C. L. 2019. In vitro and in planta evaluation of Trichoderma asperellum TA as a biocontrol agent against Phellinus noxius, the cause of brown root rot disease of trees. Plant Disease 103:2733-2741. Chuang, W. C., Chen, J. W., Huang, C. H., Shyu, T. H., and Lin, S. K. 2019. FaPEx® multipesticide residues extraction kit for minimizing sample preparation time in agricultural produce. Journal of AOAC International 102:1864-1876. Chung, C. L., Huang, S. Y., Huang, Y. C., Tzean, S. S., Ann, P. J., Tsai, J. N., Yang, C. C., Lee, H. H., Huang, T. W., Huang, H. Y., Chang, T. T., Lee, H. L., and Liou, R. F. 2015. The genetic structure of Phellinus noxius and dissemination pattern of brown root rot disease in Taiwan. PLoS ONE 10:e0139445. Chung, C. L., Lee, T. J., Akiba, M., Lee, H. H., Kuo, T. H., Liu, D., Ke, H. M., Yokoi, T., Roa, M. B., Lu, M. Y. J., Chang, Y. Y., Ann, P. J., Tsai, J. N., Chen, C. Y., Tzean, S. S., Ota, Y., Hattori, T., Sahashi, N., Liou, R. F., Kikuchi, T., and Tsai, I. J. 2017. Comparative and population genomic landscape of Phellinus noxius: a hypervariable fungus causing root rot in trees. Molecular Ecology 26:6301-6316. Crisp, C. E. 1971. Molecular design of systemic insecticides and organic functional groups in translocation. in: International IUPAC Congress Pesticide Chemistry, Tel Aviv. Crisp, C. E., and Look, M. 1982. Effect of esterification and side-chain alkylation on alteration of translocation characteristics of methamidophos. Xenobiotica 12:469-479. Davis, T. D. 1991. Regulation of tree growth and development with triazole compounds. Journal of Arboriculture 17:167-170. Evans, E. 1971. Systemic fungicides in practice. Pesticide Science 2:192-196. Eyles, A., Beadle, C., Barry, K., Francis, A., Glen, M., and Mohammed, C. 2008. Management of fungal root‐rot pathogens in tropical Acacia mangium plantations. Forest Pathology 38:332-355. Fatima, T., Srivastava, A., Hanur, V., and Rao, M. 2018. An effective wood DNA extraction protocol for three economic important timber species of India. American Journal of Plant Sciences 09:139-149. Fu, C. H., Hu, B. Y., Chang, T. T., Hsueh, K. L., and Hsu, W. T. 2012. Evaluation of dazomet as fumigant for the control of brown root rot disease. Pest Management Science 68:959-962. Garbelotto, M. M., and Schmidt, D. 2009. Phosphonate controls sudden oak death pathogen for up to 2 years. California Agriculture 63:10-17. Ge, J., Cui, K., Yan, H., Li, Y., Chai, Y., Liu, X., Cheng, J., and Yu, X. 2017. Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants. Environmental Pollution 226:479-485. Hijaz, F., Nehela, Y., Al-Rimawi, F., Vincent, C. I., and Killiny, N. 2020. The role of the xylem in oxytetracycline translocation within citrus trees. Antibiotics 9:691. Honorato, J., Debona, D., Zambolim, L., and Rodrigues, F. Á. 2021. Factors influencing the performance of phosphites on the control of coffee leaf rust. Bragantia 80:e0221. Horgan, D. B., and Gaskin, R. E. 2015. The effect of copper on the uptake and translocation of spirotetramat insecticide on kiwifruit. New Zealand Plant Protection 68:26-31. Hsiao, W. W., Hung, T. H., and Sun, E. J. 2019a. Newly discovered basidiocarps of Phellinus noxius on 33 tree species with brown root rot disease in Taiwan and the basidiospore variations in growth rate. Taiwania 64:263-268. Hsiao, W. W., Hung, T. H., and Sun, E. J. 2019b. The pathogenicity of basidiospores of Phellinus noxius which causes brown root rot disease in Taiwan. Taiwania 64:189-194. Hsu, F. C., Marxmiller, R. L., and Yang, A. Y. S. 1990. Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Plant Physiology 93:1573-1578. Ibarra Caballero, J. R., Ata, J. P., Leddy, K. A., Glenn, T. C., Kieran, T. J., Klopfenstein, N. B., Kim, M.-S., and Stewart, J. E. 2020. Genome comparison and transcriptome analysis of the invasive brown root rot pathogen, Phellinus noxius, from different geographic regions reveals potential enzymes associated with degradation of different wood substrates. Fungal Biology 124:144-154. Inglis, P. W., Pappas, M. d. C. R., Resende, L. V., and Grattapaglia, D. 2018. Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLoS ONE 13:e0206085. Kasuga, T., Hayden, K. J., Eyre, C. A., Croucher, P. J. P., Schechter, S., Wright, J. W., and Garbelotto, M. 2021. Innate resistance and phosphite treatment affect both the pathogen’s and host’s transcriptomes in the tanoak-Phytophthora ramorum pathosystem. Journal of Fungi 7:198. Kleier, D. A. 1988. Phloem mobility of xenobiotics: I. Mathematical model unifying the weak Acid and intermediate permeability theories. Plant Physiology 86:803-810. Klittich, C. J., Green, F. R., Ruiz, J. M., Weglarz, T., and Blakeslee, B. A. 2008. Assessment of fungicide systemicity in wheat using LC-MS/MS. Pest Management Science 64:1267-1277. Klittich, C. J., and Ray, S. L. 2013. Effects of physical properties on the translaminar activity of fungicides. Pesticide Biochemistry and Physiology 107:351-359. Konášová, R., Dytrtová, J. J., and Kašička, V. 2015. Determination of acid dissociation constants of triazole fungicides by pressure assisted capillary electrophoresis. Journal of Chromatography A 1408:243-249. Lamb, D. C., Cannieux, M., Warrilow, A. G. S., Bak, S., Kahn, R. A., Manning, N. J., Kelly, D. E., and Kelly, S. L. 2001. Plant sterol 14α-demethylase affinity for azole fungicides. Biochemical and Biophysical Research Communications 284:845-849. Lee, A., Jeong, S., Joo, J., Park, C.-R., Kim, J., and Kim, S. 2021. Potential role of urban forest in removing PM2.5: a case study in Seoul by deep learning with satellite data. Urban Climate 36:100795. Lehoczki-Krsjak, S., Varga, M., Szabó-Hevér, Á., and Mesterházy, Á. 2013. Translocation and degradation of tebuconazole and prothioconazole in wheat following fungicide treatment at flowering. Pest Management Science 69:1216-1224. Lei, Z., Wang, J., Mao, G., Wen, Y., and Xu, H. 2014. Phloem mobility and translocation of fluorescent conjugate containing glucose and NBD in castor bean (Ricinus communis). Journal of Photochemistry and Photobiology B: Biology 132:10-16. Li, H., Li, Y., Wang, W., Wan, Q., Yu, X. Y., and Sun, W. 2021. Uptake, translocation and subcellular distribution of three triazole pesticides in rice. Environmental Science and Pollution Research (preprint). Liang, H. J., Di, Y. L., Li, J. L., You, H., and Zhu, F. X. 2015. Baseline sensitivity of pyraclostrobin and toxicity of SHAM to Sclerotinia sclerotiorum. Plant Disease 99:267-273. Lichtner, F. 1986. Phloem transport of agricultural chemicals. Pages 601-608 in: Phloem Transport (Plant Biology). J. Cronshaw, W. J. Lucas and R. T. Giaquinta, eds. Alan R. Liss, Inc., New York. Lim, T. K., Hamm, R. T., and Mohamad, R. B. 1990. Persistency and volatile behaviour of selected chemicals in treated soil against three basidiomycetous root disease pathogens. Tropical Pest Management 36:23-26. Liu, P., Wang, H., Zhou, Y., Meng, Q., Si, N., Hao, J. J., and Liu, X. 2014. Evaluation of fungicides enestroburin and SYP1620 on their inhibitory activities to fungi and oomycetes and systemic translocation in plants. Pesticide Biochemistry and Physiology 112:19-25. MacBean C. 2012. The pesticide manual: a world compendium. 16th ed. British Crop Protection Council, Alton. Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., and Andreu, A. B. 2012. Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology 169:1417-1424. Marchler-Bauer, A., and Bryant, S. H. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Research 32:W327-331. Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., Geer, R. C., He, J., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., and Bryant, S. H. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Research 43:D222-226. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., Geer, L. Y., and Bryant, S. H. 2017. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research 45:D200-d203. Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Lu, F., Marchler, G. H., Mullokandov, M., Omelchenko, M. V., Robertson, C. L., Song, J. S., Thanki, N., Yamashita, R. A., Zhang, D., Zhang, N., Zheng, C., and Bryant, S. H. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research 39:D225-229. Milburn, J. A. 1971. An analysis of the response in phloem exudation on application of massage to Ricinus. Planta 100:143-154. Narenderan, S. T., Meyyanathan, S. N., and Babu, B. 2020. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Research International 133:109141. Nauen, R., Reckmann, U., Thomzik, J., and Thielert, W. 2008. Biological profile of spirotetramat (Movento)—a new two way systemic (amimobile) insecticide against sucking pests. Bayer CropScience Journal 61:245-278. Peuke, A. D., Gessler, A., Trumbore, S., Windt, C. W., Homan, N., Gerkema, E., and Van As, H. 2015. Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots. Plant, Cell Environment 38:433-447. Pilbeam, R. A., Howard, K., Shearer, B. L., and Hardy, G. E. S. J. 2011. Phosphite stimulated histological responses of Eucalyptus marginata to infection by Phytophthora cinnamomi. Trees 25:1121-1131. Qian, G., Wang, L., Wu, Y., Zhang, Q., Sun, Q., Liu, Y., and Liu, F. 2009. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chemistry 117:364-370. Qin, J., Chao, K., and S. Kim, M. 2010. Raman chemical imaging system for food safety and quality inspection. Transactions of the ASABE 53:1873-1882. Satchivi, N. M. 2014. Modeling xenobiotic uptake and movement: a review. Pages 41-74 in: Retention, Uptake, and Translocation of Agrochemicals in Plants, vol. 1171. American Chemical Society. Satchivi, N. M., Stoller, E. W., Wax, L. M., and Briskin, D. P. 2001. A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application. III. Influence of chemical properties, plant characteristics, and environmental parameters on xenobiotic absorption and translocation. Pesticide Biochemistry and Physiology 71:77-87. Scalliet, G., Bowler, J., Luksch, T., Kirchhofer-Allan, L., Steinhauer, D., Ward, K., Niklaus, M., Verras, A., Csukai, M., Daina, A., and Fonné-Pfister, R. 2012. Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the wheat pathogen Mycosphaerella graminicola. PLoS ONE 7:e35429. Shishatskaya, E., Menzyanova, N., Zhila, N., Prudnikova, S., Volova, T., and Thomas, S. 2018. Toxic effects of the fungicide tebuconazole on the root system of fusarium-infected wheat plants. Plant Physiology and Biochemistry 132:400-407. Sun, E. J., Chen, W. H., Li, W. C., and Huang, R. N. 2020. Shallow-hole trunk and root injection with a fungicide-containing mixture for controlling brown root rot disease in trees. Journal of Plant Medicine 62:25-34. Šudoma, M., Neuwirthová, N., Hvězdová, M., Svobodová, M., Bílková, Z., Scherr, K. E., and Hofman, J. 2019. Fate and bioavailability of four conazole fungicides in twelve different arable soils – effects of soil and pesticide properties. Chemosphere 230:347-359. Sung, C. Y. 2013. Mitigating surface urban heat island by a tree protection policy: a case study of The Woodland, Texas, USA. Urban Forestry Urban Greening 12:474-480. Tattar, T. A., Dotson, J. A., Ruizzo, M. S., and Steward, V. B. 1998. Translocation of imidacloprid in three tree species when trunk- and soil-injected. Journal of Arboriculture 24:54-56. Thomidis, T. 2003. A rapid method for in vitro evaluation of systemic fungicides against Phytophthora crown rot of fruit trees. Australasian Plant Pathology 32:347-351. Turcotte, R. M., Lagalante, A., Jones, J., Cook, F., Elliott, T., Billings, A. A., and Park, Y.-L. 2017. Spatial and temporal distribution of imidacloprid within the crown of eastern hemlock. Journal of Insect Science 17:22. Tyree, M. T., Peterson, C. A., and Edgington, L. V. 1979. A simple theory regarding ambimobility of xenobiotics with special reference to the nematicide, oxamyl. Plant Physiology 63:367-374. United States Environmental Protection Agency. 2008. Pesticide fact sheet (spirotetramat) [Fact sheet]. Van Emon, J. M., and Lopez-Avila, V. 1992. Immunochemical methods for environmental analysis. Analytical Chemistry 64:78A-88A. Velkov, T., Horne, J., Laguerre, A., Jones, E., Scanlon, M. J., and Porter, C. J. 2007. Examination of the role of intestinal fatty acid-binding protein in drug absorption using a parallel artificial membrane permeability assay. Chemistry Biology 14:453-465. Walters, D. R., Ratsep, J., and Havis, N. D. 2013. Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany 64:1263-1280. Wang, F., Li, X., Yu, S., He, S., Cao, D., Yao, S., Fang, H., and Yu, Y. 2021. Chemical factors affecting uptake and translocation of six pesticides in soil by maize (Zea mays L.). Journal of Hazardous Materials 405:124269. Watanabe, E. 2011. The present state and perspective on simple and rapid immunochemical detection for pesticide residues in crops. Japan Agricultural Research Quarterly 45:359-370. Wu, H. X., Yang, W., Zhang, Z. X., Huang, T., Yao, G. K., and Xu, H. H. 2012. Uptake and phloem transport of glucose-fipronil conjugate in Ricinus communis involve a carrier-mediated mechanism. Journal of Agricultural and Food Chemistry 60:6088-6094. Wu, Z. C., Chang, Y. Y., Lai, Q. J., Lin, H. A., Tzean, S. S., Liou, R. F., Tsai, I. J., and Chung, C. L. 2020. Soil is not a reservoir for Phellinus noxius. Phytopathology 110:362-369. Xu, T., Jacobsen, C. M., Hara, A. H., Li, J., and Li, Q. X. 2009. Efficacy of systemic insecticides on the gall wasp Quadrastichus erythrinae in wiliwili trees (Erythrina spp.). Pest Management Science 65:163-169. Yang, W., Wu, H. X., Xu, H. H., Hu, A. L., and Lu, M. L. 2011. Synthesis of glucose-fipronil conjugate and its phloem mobility. Journal of Agricultural and Food Chemistry 59:12534-12542. Yumita, T., Shoji, A., and Yamamoto, I. 1981. Metabolism of mepronil (Basitac®) in rice plants. Journal of Pesticide Science 6:347-349. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79527 | - |
| dc.description.abstract | "褐根病由木材白腐菌Phellinus noxius所引起,其在熱帶及亞熱帶地區可感染超過200種木本植物,遭受感染之樹木根部及莖基部腐朽易有傾倒之風險,造成潛在的公共安全問題。現今臺灣褐根病防治登記藥劑僅有撲克拉,此外,由於褐根病菌主要感染樹木根部,在防治時難以均勻地將殺菌劑施用在受感染組織,而為了達到最大之防治效果,以及避免長期使用單一藥劑導致抗藥性之發生,在選擇防治用藥時應篩選具有良好系統性且不同作用機制之殺菌劑。本研究首先將14支不同作用機制之殺菌劑,以0.1 ppm、1 ppm及10 ppm之含藥培養基,測試39株P. noxius菌株 [採集自臺灣 (4株)、香港 (4株)、馬來西亞 (4株)、澳洲 (5株) 及美屬太平洋群島 (16株)] 的抑制效果,結果顯示屬於Fungicide Resistance Action Committee所訂定作用機制 (Mode of Action, MoA) 中G1類之殺菌劑抑制效果最佳,尤其是環克座、得克利及依普座於1 ppm下可達97.7-99.8%之抑制率,而賽普護汰寧 (MoA-D1 + E2) 及滅普寧 (MoA-C2) 也具有良好之抑制效果,於10 ppm下分別具76.7-100%及79.1-100%之抑制率。另外,發現所有分離自American Samoa之褐根病菌株對滅普寧皆存在抗藥性,經解序後發現其在succinate dehydrogenase subunit C (SDHC) 胺基酸序列發生三個點突變,其中S85A及V173I可能為造成抗藥性發生之主因。為評估藥劑之移行性,透過根部浸泡及莖部注射之方式施用滅普寧、環克座、得克利、依普座、撲克拉及賽普護汰寧於茄苳 (Bischofia javanica) 實生苗進行測試,並於7天及21天後利用液相或氣相層析串聯式質譜儀進行殘留量分析,發現所有測試藥劑皆不具向下移行之能力,而環克座及得克利具有顯著較佳之向上移行性,依普座較弱,而撲克拉、滅普寧、賽普洛及護汰寧之移行能力則相當有限。而利用莖部注射之方式,於施藥後21天得克利、依普座及賽普洛向上移行能力顯著優於其他藥劑,可能由於依普座及賽普洛難以被根部吸收,導致其於根部浸泡系統中移行性不佳。最後透過上述六支殺菌劑及亞磷酸鉀的土壤澆灌並配合P. noxius 2248之人工莖部接種茄苳苗,評估殺菌劑藉由向上移行以防治褐根病之能力,發現在莖部變色面積、分離率及P. noxius菌量分析上,各個藥劑處理與對照組間並無顯著差異,可能與接種過於強勢有關,未來有待進一步以田間試驗評估藥劑在成樹之預防及治療效果。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:02:50Z (GMT). No. of bitstreams: 1 U0001-2609202122333400.pdf: 38358289 bytes, checksum: cb0e2e236b0ffd685ec65085eb495a82 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii Abstract iv 目錄 vi 表目錄 ix 圖目錄 x 附錄目錄 xi 第一章、 前言 1 1.1 褐根病簡介 1 1.1.1 褐根病之重要性 2 1.1.2 現行防治方法 3 1.2 化學藥劑之系統性 5 1.2.1 影響化學藥劑移行之因素 5 1.2.2 移行性預測模型 7 1.3 化學藥劑之偵測方式 7 1.4 研究動機 8 第二章、 材料與方法 10 2.1 供試植物 10 2.2 供試菌株 10 2.2.1 菌株保存與培養 10 2.3 P. noxius對殺菌劑之敏感性測試 11 2.4 殺菌劑於樹苗之移行性評估 11 2.4.1 樹苗移行性評估系統之建立 11 2.4.2 藥劑於茄苳苗之向上移行性試驗 (根部浸泡) 12 2.4.3 藥劑於茄苳苗之上下移行性試驗 (莖部注射) 13 2.4.4 樣品前處理及藥劑殘留量分析 13 2.4.5 統計分析 14 2.5 殺菌劑對茄苳苗之藥害評估 15 2.6 溫室藥劑防治試驗 15 2.6.1 接種源製備及接種方法 16 2.6.2 P. noxius分離率 16 2.6.3 Quantitative Real-time PCR (qPCR) 17 2.6.4 接種部位之藥劑殘留量分析 18 2.6.5 統計分析 18 第三章、 結果 20 3.1 P. noxius對殺菌劑之敏感性測試 20 3.2 殺菌劑於樹苗之移行性評估 21 3.2.1 移行性系統之建立 21 3.2.2 藥劑於茄苳苗之向上移行性評估 (根部浸泡) 22 3.2.3 藥劑於茄苳苗之上下移行性評估 (莖部注射) 23 3.3 殺菌劑對茄苳苗之藥害評估 24 3.4 溫室藥劑防治試驗 24 3.4.1 萎凋率 24 3.4.2 莖部變色面積比率 25 3.4.3 P. noxius分離率 26 3.4.4 qPCR分析茄苳罹病組織內P. noxius菌量 26 3.4.5 接種部位之藥劑殘留量 27 第四章、 討論 28 4.1 P. noxius對殺菌劑之敏感性測試 28 4.2 滅普寧抗藥性分析 29 4.3 藥劑移行性測試系統之建立 30 4.4 殺菌劑於樹苗之移行性評估 32 4.4.1 提升化學藥劑於植物體內之移行性 34 4.5 殺菌劑對茄苳苗之藥害評估 35 4.6 溫室藥劑防治試驗 36 4.7 褐根病防治之建議 38 第五章、 參考文獻 40 表 52 圖 70 附錄 94 | |
| dc.language.iso | zh-TW | |
| dc.title | 殺菌劑之移行性及對樹木褐根病之防治效果 | zh_TW |
| dc.title | Translocation of fungicides and their efficacy on controlling brown root rot of trees | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡志濃(Hsin-Tsai Liu),洪挺軒(Chih-Yang Tseng),黃姿碧,洪爭坊 | |
| dc.subject.keyword | 褐根病,化學防治,殺菌劑,移行性, | zh_TW |
| dc.subject.keyword | brown root rot,chemical control,fungicide,translocation, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU202103375 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-01 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
| dc.date.embargo-lift | 2026-09-29 | - |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2609202122333400.pdf 此日期後於網路公開 2026-09-29 | 37.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
