請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79525完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 嚴震東(Chen-Tung Yen) | |
| dc.contributor.author | Han-Yuan Yeh | en |
| dc.contributor.author | 葉瀚元 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:02:46Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-23T09:02:46Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-01 | |
| dc.identifier.citation | Abtin, A., Jain, R., Mitchell, A.J., Roediger, B., Brzoska, A.J., Tikoo, S., Cheng, Q., Ng, L.G., Cavanagh, L.L., and Von Andrian, U.H. (2014). Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15, 45-53. Amaya, F., Decosterd, I., Samad, T.A., Plumpton, C., Tate, S., Mannion, R.J., Costigan, M., and Woolf, C.J. (2000). Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol. Cell. Neurosci. 15, 331-342. Amir, R., Kocsis, J.D., and Devor, M. (2005). Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons. J. Neurosci. 25, 2576-2585. 10.1523/JNEUROSCI.4118-04.2005. Austin, P.J., and Moalem-Taylor, G. (2010). The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J. Neuroimmunol. 229, 26-50. 10.1016/j.jneuroim.2010.08.013. Barreiro, O., Cibrian, D., Clemente, C., Alvarez, D., Moreno, V., Valiente, I., Bernad, A., Vestweber, D., Arroyo, A.G., Martin, P., et al. (2016). Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. Elife 5. 10.7554/eLife.15251. Batbold, D., Shinoda, M., Honda, K., Furukawa, A., Koizumi, M., Akasaka, R., Yamaguchi, S., and Iwata, K. (2017). Macrophages in trigeminal ganglion contribute to ectopic mechanical hypersensitivity following inferior alveolar nerve injury in rats. J. Neuroinflammation 14, 249. 10.1186/s12974-017-1022-3. Beaudry, H., Daou, I., Ase, A.R., Ribeiro-da-Silva, A., and Séguéla, P. (2017). Distinct behavioral responses evoked by selective optogenetic stimulation of the major TRPV1+ and MrgD+ subsets of C-fibers. Pain 158, 2329-2339. Bechakra, M., Schüttenhelm, B.N., Pederzani, T., van Doorn, P.A., de Zeeuw, C.I., and Jongen, J.L. (2017). The reduction of intraepidermal P2X3 nerve fiber density correlates with behavioral hyperalgesia in a rat model of nerve injury‐induced pain. J. Comp. Neurol. 525, 3757-3768. Bennett, D.L., Clark, A.J., Huang, J., Waxman, S.G., and Dib-Hajj, S.D. (2019). The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol. Rev. 99, 1079-1151. 10.1152/physrev.00052.2017. Benson, C.A., Fenrich, K.K., Olson, K.-L., Patwa, S., Bangalore, L., Waxman, S.G., and Tan, A.M. (2020). Dendritic spine dynamics after peripheral nerve injury: an intravital structural study. J. Neurosci. 40, 4297-4308. Bentolila, N.Y., Barnhill, R.L., Lugassy, C., and Bentolila, L.A. (2018). Intravital Imaging of Human Melanoma Cells in the Mouse Ear Skin by Two-Photon Excitation Microscopy. Methods Mol. Biol. 1755, 223-232. 10.1007/978-1-4939-7724-6_15. Blumberg, H., and Janig, W. (1984). Discharge pattern of afferent fibers from a neuroma. Pain 20, 335-353. 10.1016/0304-3959(84)90111-8. Bourquin, A.F., Suveges, M., Pertin, M., Gilliard, N., Sardy, S., Davison, A.C., Spahn, D.R., and Decosterd, I. (2006). Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain 122, 14 e11-14. 10.1016/j.pain.2005.10.036. Bridges, D., Thompson, S.W., and Rice, A.S. (2001). Mechanisms of neuropathic pain. Br. J. Anaesth. 87, 12-26. 10.1093/bja/87.1.12. Campbell, J.N., and Meyer, R.A. (2006). Mechanisms of neuropathic pain. Neuron 52, 77-92. 10.1016/j.neuron.2006.09.021. Casals-Diáz, L., Casas, C., and Navarro, X. (2015). Changes of voltage-gated sodium channels in sensory nerve regeneration and neuropathic pain models. Restor. Neurol. Neurosci. 33, 321-334. Cavanaugh, D.J., Lee, H., Lo, L., Shields, S.D., Zylka, M.J., Basbaum, A.I., and Anderson, D.J. (2009). Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc. Natl. Acad. Sci. U.S.A. 106, 9075-9080. Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, J.M., and Yaksh, T.L. (1994). Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55-63. Chen, O., Donnelly, C.R., and Ji, R.R. (2019). Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr. Opin. Neurobiol. 62, 17-25. 10.1016/j.conb.2019.11.006. Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., and Denisin, A.K. (2013). Structural and molecular interrogation of intact biological systems. Nature 497, 332-337. Cichon, J., Sun, L., and Yang, G. (2018). Spared Nerve Injury Model of Neuropathic Pain in Mice. Bio. Protoc. 8. 10.21769/bioprotoc.2777. Colleoni, M., and Sacerdote, P. (2010). Murine models of human neuropathic pain. Biochim. Biophys. Acta 1802, 924-933. 10.1016/j.bbadis.2009.10.012. Costigan, M., Scholz, J., and Woolf, C.J. (2009). Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1-32. 10.1146/annurev.neuro.051508.135531. Decosterd, I., and Woolf, C.J. (2000). Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149-158. DeFrancesco-Lisowitz, A., Lindborg, J.A., Niemi, J.P., and Zigmond, R.E. (2015). The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 302, 174-203. 10.1016/j.neuroscience.2014.09.027. Di Maio, A., Skuba, A., Himes, B.T., Bhagat, S.L., Hyun, J.K., Tessler, A., Bishop, D., and Son, Y.J. (2011). In vivo imaging of dorsal root regeneration: rapid immobilization and presynaptic differentiation at the CNS/PNS border. J. Neurosci. 31, 4569-4582. 10.1523/JNEUROSCI.4638-10.2011. Djouhri, L., Koutsikou, S., Fang, X., McMullan, S., and Lawson, S.N. (2006). Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J. Neurosci. 26, 1281-1292. 10.1523/JNEUROSCI.3388-05.2006. Dong, X., Han, S.-k., Zylka, M.J., Simon, M.I., and Anderson, D.J. (2001). A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106, 619-632. Duraku, L.S., Hossaini, M., Hoendervangers, S., Falke, L.L., Kambiz, S., Mudera, V.C., Holstege, J.C., Walbeehm, E.T., and Ruigrok, T.J. (2012). Spatiotemporal dynamics of re-innervation and hyperinnervation patterns by uninjured CGRP fibers in the rat foot sole epidermis after nerve injury. Mol. Pain 8, 61. 10.1186/1744-8069-8-61. Duraku, L.S., Hossaini, M., Schuttenhelm, B.N., Holstege, J.C., Baas, M., Ruigrok, T.J., and Walbeehm, E.T. (2013). Re-innervation patterns by peptidergic Substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain. Exp. Neurol. 241, 13-24. 10.1016/j.expneurol.2012.11.029. Echeverry, S., Wu, Y., and Zhang, J. (2013). Selectively reducing cytokine/chemokine expressing macrophages in injured nerves impairs the development of neuropathic pain. Exp. Neurol. 240, 205-218. 10.1016/j.expneurol.2012.11.013. Ellis, A., and Bennett, D.L. (2013). Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth. 111, 26-37. 10.1093/bja/aet128. Feng, G., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman, J.W., and Sanes, J.R. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41-51. 10.1016/s0896-6273(00)00084-2. Fukuoka, T., Kondo, E., Dai, Y., Hashimoto, N., and Noguchi, K. (2001). Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J. Neurosci. 21, 4891-4900. Fukuoka, T., Tokunaga, A., Tachibana, T., Dai, Y., Yamanaka, H., and Noguchi, K. (2002). VR1, but not P2X3, increases in the spared L4 DRG in rats with L5 spinal nerve ligation. Pain 99, 111-120. Gehrmann, J., Monaco, S., and Kreutzberg, G.W. (1991). Spinal cord microglial cells and DRG satellite cells rapidly respond to transection of the rat sciatic nerve. Restor. Neurol. Neurosci. 2, 181-198. Gold, M.S., Weinreich, D., Kim, C.S., Wang, R., Treanor, J., Porreca, F., and Lai, J. (2003). Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J. Neurosci. 23, 158-166. Gray, C., Loynes, C.A., Whyte, M.K., Crossman, D.C., Renshaw, S.A., and Chico, T.J. (2011). Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb. Haemost. 105, 811-819. Hudson, L., Bevan, S., Wotherspoon, G., Gentry, C., Fox, A., and Winter, J. (2001). VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur. J. Neurosci. 13, 2105-2114. Jaggi, A.S., Jain, V., and Singh, N. (2011). Animal models of neuropathic pain. Fundam. Clin. Pharmacol. 25, 1-28. 10.1111/j.1472-8206.2009.00801.x. Kiguchi, N., Kobayashi, D., Saika, F., Matsuzaki, S., and Kishioka, S. (2017). Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages. Int. J. Mol. Sci. 18. 10.3390/ijms18112296. Kiguchi, N., Kobayashi, D., Saika, F., Matsuzaki, S., and Kishioka, S. (2018). Inhibition of peripheral macrophages by nicotinic acetylcholine receptor agonists suppresses spinal microglial activation and neuropathic pain in mice with peripheral nerve injury. J. Neuroinflammation 15, 96. 10.1186/s12974-018-1133-5. Kim, C.F., and Moalem-Taylor, G. (2011). Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res. 1405, 95-108. 10.1016/j.brainres.2011.06.022. Kim, S.K., and Nabekura, J. (2011). Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J. Neurosci. 31, 5477-5482. Ko, M.H., Hu, M.E., Hsieh, Y.L., Lan, C.T., and Tseng, T.J. (2014). Peptidergic intraepidermal nerve fibers in the skin contribute to the neuropathic pain in paclitaxel-induced peripheral neuropathy. Neuropeptides 48, 109-117. 10.1016/j.npep.2014.02.001. Kolter, J., Feuerstein, R., Zeis, P., Hagemeyer, N., Paterson, N., d'Errico, P., Baasch, S., Amann, L., Masuda, T., Losslein, A., et al. (2019). A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves. Immunity 50, 1482-1497 e1487. 10.1016/j.immuni.2019.05.009. Komori, T., Morikawa, Y., Inada, T., Hisaoka, T., and Senba, E. (2011). Site-specific subtypes of macrophages recruited after peripheral nerve injury. Neuroreport 22, 911-917. 10.1097/WNR.0b013e32834cd76a. Kuner, R., and Flor, H. (2016). Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18, 20-30. 10.1038/nrn.2016.162. Kung, C.-C., Huang, Y.-C., Hung, T.-Y., Teng, C.-Y., Lee, T.-Y., and Sun, W.-H. (2020). Deletion of Acid-Sensing Ion Channel 3 Relieves the Late Phase of Neuropathic Pain by Preventing Neuron Degeneration and Promoting Neuron Repair. Cells 9, 2355. Laedermann, C.J., Pertin, M., Suter, M.R., and Decosterd, I. (2014). Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers. Mol. Pain 10, 1-11. Lai, J., Porreca, F., Hunter, J.C., and Gold, M.S. (2004). Voltage-gated sodium channels and hyperalgesia. Annu. Rev. Pharmacol. Toxicol. 44, 371-397. Lauria, G., Cornblath, D., Johansson, O., McArthur, J.C., Mellgren, S., Nolano, M., Rosenberg, N., and Sommer, C. (2005). EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur. J. Neurol. 12, 747-758. Lauria, G., and Devigili, G. (2007). Skin biopsy as a diagnostic tool in peripheral neuropathy. Nature clinical practice Neurology 3, 546-557. Lee, S., Shi, X.Q., Fan, A., West, B., and Zhang, J. (2018). Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain. Mol. Pain 14, 1744806918764979. 10.1177/1744806918764979. Leibovich, H., Buzaglo, N., Tsuriel, S., Peretz, L., Caspi, Y., Katz, B., Lev, S., Lichtstein, D., and Binshtok, A.M. (2020). Abnormal Reinnervation of Denervated Areas Following Nerve Injury Facilitates Neuropathic Pain. Cells 9. 10.3390/cells9041007. Li, J.L., Goh, C.C., Keeble, J.L., Qin, J.S., Roediger, B., Jain, R., Wang, Y., Chew, W.K., Weninger, W., and Ng, L.G. (2012). Intravital multiphoton imaging of immune responses in the mouse ear skin. Nat. Protoc. 7, 221-234. 10.1038/nprot.2011.438. Lichtman, J.W., Magrassi, L., and Purves, D. (1987). Visualization of neuromuscular junctions over periods of several months in living mice. J. Neurosci. 7, 1215-1222. Liu, Q., and Dong, X. (2015). The role of the Mrgpr receptor family in itch. In Pharmacology of Itch, (Springer), pp. 71-88. Liu, T., van Rooijen, N., and Tracey, D.J. (2000). Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain 86, 25-32. 10.1016/s0304-3959(99)00306-1. Lu, X., and Richardson, P. (1993). Responses of macrophages in rat dorsal root ganglia following peripheral nerve injury. Journal of neurocytology 22, 334-341. Miyamoto, A., Wake, H., Ishikawa, A.W., Eto, K., Shibata, K., Murakoshi, H., Koizumi, S., Moorhouse, A.J., Yoshimura, Y., and Nabekura, J. (2016). Microglia contact induces synapse formation in developing somatosensory cortex. Nat. commun. 7, 1-12. Morin, N., Owolabi, S., Harty, M., Papa, E., Tracy Jr, T., Shaw, S., Kim, M., and Saab, C. (2007). Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve. J. neuroimmunol. 184, 164-171. Mueller, M., Leonhard, C., Wacker, K., Ringelstein, E.B., Okabe, M., Hickey, W.F., and Kiefer, R. (2003). Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab. Invest. 83, 175-185. 10.1097/01.lab.0000056993.28149.bf. Mueller, M., Wacker, K., Ringelstein, E.B., Hickey, W.F., Imai, Y., and Kiefer, R. (2001). Rapid response of identified resident endoneurial macrophages to nerve injury. Am. J. Pathol. 159, 2187-2197. 10.1016/S0002-9440(10)63070-2. Nascimento, F.P., Magnussen, C., Yousefpour, N., and Ribeiro-da-Silva, A. (2015). Sympathetic fibre sprouting in the skin contributes to pain-related behaviour in spared nerve injury and cuff models of neuropathic pain. Mol. Pain 11, 59. 10.1186/s12990-015-0062-x. Natsuaki, Y., Egawa, G., Nakamizo, S., Ono, S., Hanakawa, S., Okada, T., Kusuba, N., Otsuka, A., Kitoh, A., and Honda, T. (2014). Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol. 15, 1064-1069. Obata, K., Yamanaka, H., Fukuoka, T., Yi, D., Tokunaga, A., Hashimoto, N., Yoshikawa, H., and Noguchi, K. (2003). Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 101, 65-77. 10.1016/s0304-3959(02)00296-8. Obeidy, P., Tong, P.L., and Weninger, W. (2018). Research Techniques Made Simple: Two-Photon Intravital Imaging of the Skin. J. Invest. Dermatol. 138, 720-725. 10.1016/j.jid.2018.01.017. Peleshok, J.C., and Ribeiro-da-Silva, A. (2011). Delayed reinnervation by nonpeptidergic nociceptive afferents of the glabrous skin of the rat hindpaw in a neuropathic pain model. J. Comp. Neurol. 519, 49-63. 10.1002/cne.22500. Perkins, N., and Tracey, D. (2000). Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience 101, 745-757. Pinho-Ribeiro, F.A., Verri, W.A., Jr., and Chiu, I.M. (2017). Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol. 38, 5-19. 10.1016/j.it.2016.10.001. Raoof, R., Willemen, H.L., and Eijkelkamp, N. (2018). Divergent roles of immune cells and their mediators in pain. Rheumatology 57, 429-440. Rich, M.M., and Lichtman, J.W. (1989). In vivo visualization of pre-and postsynaptic changes during synapse elimination in reinnervated mouse muscle. J. Neurosci. 9, 1781-1805. Richner, M., Bjerrum, O.J., Nykjaer, A., and Vaegter, C.B. (2011). The spared nerve injury (SNI) model of induced mechanical allodynia in mice. J. Vis. Exp. 10.3791/3092. Ristoiu, V. (2013). Contribution of macrophages to peripheral neuropathic pain pathogenesis. Life Sci. 93, 870-881. 10.1016/j.lfs.2013.10.005. Roediger, B., Ng, L.G., Smith, A.L., Fazekas de St Groth, B., and Weninger, W. (2008). Visualizing dendritic cell migration within the skin. Histochem. Cell Biol. 130, 1131-1146. 10.1007/s00418-008-0531-7. Rosenberg, A.F., Wolman, M.A., Franzini-Armstrong, C., and Granato, M. (2012). In vivo nerve-macrophage interactions following peripheral nerve injury. J. Neurosci. 32, 3898-3909. 10.1523/JNEUROSCI.5225-11.2012. Schäfers, M., Lee, D.H., Brors, D., Yaksh, T.L., and Sorkin, L.S. (2003). Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-α after spinal nerve ligation. J. Neurosci. 23, 3028-3038. Scholz, J., and Woolf, C.J. (2007). The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 10, 1361-1368. 10.1038/nn1992. Sheen, K., and Chung, J.M. (1993). Signs of neuropathic pain depend on signals from injured nerve fibers in a rat model. Brain Res. 610, 62-68. 10.1016/0006-8993(93)91217-g. Shepherd, A.J., Copits, B.A., Mickle, A.D., Karlsson, P., Kadunganattil, S., Haroutounian, S., Tadinada, S.M., de Kloet, A.D., Valtcheva, M.V., McIlvried, L.A., et al. (2018a). Angiotensin II Triggers Peripheral Macrophage-to-Sensory Neuron Redox Crosstalk to Elicit Pain. J. Neurosci. 38, 7032-7057. 10.1523/JNEUROSCI.3542-17.2018. Shepherd, A.J., Mickle, A.D., Golden, J.P., Mack, M.R., Halabi, C.M., de Kloet, A.D., Samineni, V.K., Kim, B.S., Krause, E.G., Gereau, R.W.t., and Mohapatra, D.P. (2018b). Macrophage angiotensin II type 2 receptor triggers neuropathic pain. Proc. Natl. Acad. Sci. U.S.A. 115, E8057-E8066. 10.1073/pnas.1721815115. Shields, S.D., Ahn, H.S., Yang, Y., Han, C., Seal, R.P., Wood, J.N., Waxman, S.G., and Dib-Hajj, S.D. (2012). Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 153, 2017-2030. 10.1016/j.pain.2012.04.022. Shutov, L.P., Warwick, C.A., Shi, X., Gnanasekaran, A., Shepherd, A.J., Mohapatra, D.P., Woodruff, T.M., Clark, J.D., and Usachev, Y.M. (2016). The Complement System Component C5a Produces Thermal Hyperalgesia via Macrophage-to-Nociceptor Signaling That Requires NGF and TRPV1. J. Neurosci. 36, 5055-5070. 10.1523/JNEUROSCI.3249-15.2016. Smith, F.M., Haskelberg, H., Tracey, D.J., and Moalem-Taylor, G. (2007). Role of histamine H3 and H4 receptors in mechanical hyperalgesia following peripheral nerve injury. Neuroimmunomodulation 14, 317-325. Sommer, C., and Lauria, G. (2007). Skin biopsy in the management of peripheral neuropathy. The Lancet Neurology 6, 632-642. Staaf, S., Oerther, S., Lucas, G., Mattsson, J.P., and Ernfors, P. (2009). Differential regulation of TRP channels in a rat model of neuropathic pain. Pain 144, 187-199. Sukhotinsky, I., Ben-Dor, E., Raber, P., and Devor, M. (2004). Key role of the dorsal root ganglion in neuropathic tactile hypersensibility. Eur. J. Pain 8, 135-143. 10.1016/S1090-3801(03)00086-7. Taskinen, H.S., and Roytta, M. (1997). The dynamics of macrophage recruitment after nerve transection. Acta Neuropathol. 93, 252-259. 10.1007/s004010050611. Taylor-Clark, T.E., Wu, K.Y., Thompson, J.A., Yang, K., Bahia, P.K., and Ajmo, J.M. (2015). Thy1.2 YFP-16 transgenic mouse labels a subset of large-diameter sensory neurons that lack TRPV1 expression. PLoS One 10, e0119538. 10.1371/journal.pone.0119538. Thacker, M.A., Clark, A.K., Marchand, F., and McMahon, S.B. (2007). Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth. Analg. 105, 838-847. Thakor, D.K., Lin, A., Matsuka, Y., Meyer, E.M., Ruangsri, S., Nishimura, I., and Spigelman, I. (2009). Increased peripheral nerve excitability and local NaV1.8 mRNA up-regulation in painful neuropathy. Mol. Pain 5, 14. 10.1186/1744-8069-5-14. Tseng, W.T., Tsai, M.L., Iwata, K., and Yen, C.T. (2012). Long-term changes in trigeminal ganglionic and thalamic neuronal activities following inferior alveolar nerve transection in behaving rats. J. Neurosci. 32, 16051-16063. 10.1523/JNEUROSCI.1828-12.2012. Tsuzuki, K., Kondo, E., Fukuoka, T., Yi, D., Tsujino, H., Sakagami, M., and Noguchi, K. (2001). Differential regulation of P2X(3) mRNA expression by peripheral nerve injury in intact and injured neurons in the rat sensory ganglia. Pain 91, 351-360. 10.1016/s0304-3959(00)00456-5. Wang, C., Gu, L., Ruan, Y., Geng, X., Xu, M., Yang, N., Yu, L., Jiang, Y., Zhu, C., and Yang, Y. (2019). Facilitation of MrgprD by TRP‐A1 promotes neuropathic pain. The FASEB Journal 33, 1360-1373. Watanabe, K., Konno, S.-i., Sekiguchi, M., Sasaki, N., Honda, T., and Kikuchi, S.-i. (2007). Increase of 200-kDa neurofilament-immunoreactive afferents in the substantia gelatinosa in allodynic rats induced by compression of the dorsal root ganglion. Spine 32, 1265-1271. Woolf, C.J., Shortland, P., and Coggeshall, R.E. (1992). Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355, 75-78. Wu, G., Ringkamp, M., Hartke, T.V., Murinson, B.B., Campbell, J.N., Griffin, J.W., and Meyer, R.A. (2001). Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J. Neurosci. 21, RC140. Wu, G., Ringkamp, M., Murinson, B.B., Pogatzki, E.M., Hartke, T.V., Weerahandi, H.M., Campbell, J.N., Griffin, J.W., and Meyer, R.A. (2002). Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J. Neurosci. 22, 7746-7753. Yeh, T.-Y., Luo, I.-W., Hsieh, Y.-L., Tseng, T.-J., Chiang, H., and Hsieh, S.-T. (2020). Peripheral Neuropathic Pain: From Experimental Models to Potential Therapeutic Targets in Dorsal Root Ganglion Neurons. Cells 9, 2725. Yen, L.D., Bennett, G.J., and Ribeiro-da-Silva, A. (2006). Sympathetic sprouting and changes in nociceptive sensory innervation in the glabrous skin of the rat hind paw following partial peripheral nerve injury. J. Comp. Neurol. 495, 679-690. 10.1002/cne.20899. Yoon, Y.W., Na, H.S., and Chung, J.M. (1996). Contributions of injured and intact afferents to neuropathic pain in an experimental rat model. Pain 64, 27-36. Yu, X., Liu, H., Hamel, K.A., Morvan, M.G., Yu, S., Leff, J., Guan, Z., Braz, J.M., and Basbaum, A.I. (2020). Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat. Commun. 11, 264. 10.1038/s41467-019-13839-2. Yuryev, M., and Khiroug, L. (2012). Dynamic longitudinal investigation of individual nerve endings in the skin of anesthetized mice using in vivo two-photon microscopy. J. Biomed. Opt. 17, 046007. 10.1117/1.JBO.17.4.046007. Yuryev, M., Molotkov, D., and Khiroug, L. (2014). In vivo two-photon microscopy of single nerve endings in skin. J. Vis. Exp. 10.3791/51045. Zhang, H., Li, Y., de Carvalho-Barbosa, M., Kavelaars, A., Heijnen, C.J., Albrecht, P.J., and Dougherty, P.M. (2016). Dorsal Root Ganglion Infiltration by Macrophages Contributes to Paclitaxel Chemotherapy-Induced Peripheral Neuropathy. J. Pain 17, 775-786. 10.1016/j.jpain.2016.02.011. Zigmond, R.E., and Echevarria, F.D. (2019). Macrophage biology in the peripheral nervous system after injury. Prog. Neurobiol. 173, 102-121. 10.1016/j.pneurobio.2018.12.001. Zuo, Y., Perkins, N.M., Tracey, D.J., and Geczy, C.L. (2003). Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain 105, 467-479. Zylka, M.J., Rice, F.L., and Anderson, D.J. (2005). Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17-25. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79525 | - |
| dc.description.abstract | " 周邊神經痛是由於初級感覺神經受傷所造成的神經病變。在周邊神經痛中可以觀察到神經退化以及神經側枝生長的狀況,同時代表著不僅是受傷神經,周圍的完好神經也可能是造成神經痛的原因。目前對於神經在受傷後的變化與疼痛的發展與維持之間的因果關係仍存在著爭議。這是因為過去的研究主要建立在切片樣品以及離體後觀察,造成觀察不全面以及不連續的緣故。在本研究中,我們發展出能夠長期並且活體觀察小鼠腳趾皮下神經的方法,並且觀察小鼠在坐骨神經分支選擇性傷害(Spared nerve injury, SNI)的神經痛模型下,不同種類的神經纖維以及神經叢隨時間的變化。我們發現神經受損之後,第五趾以及第三趾的神經末梢與神經叢皆在神經受傷後二至三天內退化,並且神經末梢的退化較快。與神經退化的趨勢相同,小鼠對機械性刺激的收縮閾值也在數天內下降。另外,第五趾中的神經會在部分退化數週之後生長回來。因此,神經的退化可能與神經痛的起始有關。而晚期的神經側枝生長可能與神經痛的維持有關。 除了神經系統本身之外,許多研究也證實了在神經痛的發展過程中,免疫系統扮演了很重要的角色。在免疫系統中,巨噬細胞是其中一種與神經痛有關的免疫細胞。它們參與了神經受傷後的發炎反應、其他免疫細胞的召集、神經殘骸的清理,以及神經的新生。因此我們更進一步去研究巨噬細胞與神經變化在神經痛發展中的關係。我們利用靜脈注射 FITC-dextran 至 Nav1.8-tdTomato 基因轉殖小鼠中,或是注射 AAV1-CAV-tdTomato 至 Iba1-GFP 基因轉殖小鼠,來同時標定腳趾皮下神經以及巨噬細胞,並且同時觀察 SNI 手術神經受損後兩者的變化。我們發現,FITC-dextran 標定的巨噬細胞在神經受損後數小時內趾內數量便會增加,直至受傷後7天仍有增加的巨噬細胞停留在趾中。另一方面,Iba1-GFP 標定的巨噬細胞也會在神經受損後數小時內增加,同時其體積也變得較大並附著於神經上。根據以上結果,巨噬細胞短時間的增加可能與神經痛的起始有關,而後期巨噬細胞的聚集與停留可能參與了神經痛的維持。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:02:46Z (GMT). No. of bitstreams: 1 U0001-2709202116211000.pdf: 4748643 bytes, checksum: c630bde54ab75db4246fed2d9a7f0c01 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝...i 中文摘要...ii Abstract...iv Contents...vi List of tables...ix Chapter 1. General introduction...1 1.1 Peripheral neuropathic pain...1 1.2 Involvement of immune system in neuropathic pain...3 1.3 The aim of this study...6 Chapter 2. Experimental design for intravital observation...7 2.1 Introduction...7 2.2 Materials and methods...8 2.3 Results...12 2.4 Discussion...14 2.5 Figures...17 Chapter 3. Longitudinal intravital imaging for nerve degeneration and peripheral sprouting in the toes of spared nerve injured mice...20 3.1 Introduction...20 3.2 Materials and methods...23 3.3 Results...28 3.4 Discussion...32 3.5 Figures...39 3.6 Tables...48 Chapter 4. Visualizing the Interaction between Immune Cells and Peripheral Sensory Fibers in Mice Neuropathic Model...49 4.1 Introduction...49 4.2 Materials and methods...51 4.3 Results...56 4.4 Discussion...58 4.5 Figures...62 Chapter 5. General discussion...70 Chapter 6. Conclusion...74 References...75 | |
| dc.language.iso | en | |
| dc.title | 長期活體觀測周邊神經和巨噬細胞對神經痛早期與晚期之變化 | zh_TW |
| dc.title | Longitudinal Intravital Imaging for Peripheral Sensory Fibers and Macrophages during the Early and Late phases of Neuropathic Pain | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-7548-8237 | |
| dc.contributor.advisor-orcid | 嚴震東(0000-0002-0076-4487) | |
| dc.contributor.oralexamcommittee | 閔明源(Hsin-Tsai Liu),陳志成(Chih-Yang Tseng),孫維仁,謝松蒼 | |
| dc.subject.keyword | 神經痛,活體影像,周邊神經退化,周邊神經萌芽,巨噬細胞, | zh_TW |
| dc.subject.keyword | neuropathic pain,intravital imaging,nerve degeneration,nerve sprouting,macrophage, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202103400 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2709202116211000.pdf | 4.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
