Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79523
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧彥文(Yen-Wen Lu)
dc.contributor.authorTing-Chia Chuen
dc.contributor.author朱庭加zh_TW
dc.date.accessioned2022-11-23T09:02:43Z-
dc.date.available2021-11-05
dc.date.available2022-11-23T09:02:43Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-22
dc.identifier.citationAbbasi, M. S., R. Song and J. Lee (2019). 'Breakups of an encapsulated surfactant-laden aqueous droplet under a DC electric field.' Soft matter 15(43): 8905-8911. Abdelgawad, M., M. W. Watson and A. R. Wheeler (2009). 'Hybrid microfluidics: A digital-to-channel interface for in-line sample processing and chemical separations.' Lab on a Chip 9(8): 1046-1051. Abgrall, P. and A. Gue (2007). 'Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review.' Journal of micromechanics and microengineering 17(5): R15. Andrews, D., T. Nann and R. H. Lipson (2019). Comprehensive nanoscience and nanotechnology, Academic press. Baird, E., P. Young and K. Mohseni (2007). 'Electrostatic force calculation for an EWOD-actuated droplet.' Microfluidics and Nanofluidics 3(6): 635-644. Bender, B. F. and R. L. Garrell (2015). 'Digital microfluidic system with vertical functionality.' Micromachines 6(11): 1655-1674. Berthier, J. (2008). Microdrops and Digital Microfluidics, William Andrew Inc. Brassard, D., L. Malic, F. Normandin, M. Tabrizian and T. Veres (2008). 'Water-oil core-shell droplets for electrowetting-based digital microfluidic devices.' Lab on a Chip 8(8): 1342-1349. Chen, L. and E. Bonaccurso (2014). 'Electrowetting—From statics to dynamics.' Advances in colloid and interface science 210: 2-12. Cho, S. K., H. Moon and C.-J. Kim (2003). 'Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits.' Journal of Microelectromechanical Systems 12(1): 70-80. Choi, K., A. H. Ng, R. Fobel and A. R. Wheeler (2012). 'Digital microfluidics.' Annual review of analytical chemistry 5: 413-440. Ding, H., S. Sadeghi, G. J. Shah, S. Chen, P. Y. Keng and R. M. van Dam (2012). 'Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips.' Lab on a Chip 12(18): 3331-3340. Fan, S.-K., Y.-W. Hsu and C.-H. Chen (2011). 'Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis.' Lab on a Chip 11(15): 2500-2508. Fan, S.-K., H. Yang and W. Hsu (2011). 'Droplet-on-a-wristband: Chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.' Lab on a Chip 11(2): 343-347. Farzbod, A. and H. Moon (2018). 'Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.' Biosensors and Bioelectronics 106: 37-42. Ghallab, Y. and W. Badawy (2004). 'Sensing methods for dielectrophoresis phenomenon: from bulky instruments to lab-on-a-chip.' IEEE Circuits and Systems Magazine 4(3): 5-15. Gorkin, R., J. Park, J. Siegrist, M. Amasia, B. S. Lee, J.-M. Park, J. Kim, H. Kim, M. Madou and Y.-K. Cho (2010). 'Centrifugal microfluidics for biomedical applications.' Lab on a Chip 10(14): 1758-1773. Hong, J., Y. K. Kim, D.-J. Won, J. Kim and S. J. Lee (2015). 'Three-dimensional digital microfluidic manipulation of droplets in oil medium.' Scientific reports 5: 10685. Hong, J., Y. K. Kim, D.-J. Won, J. Kim and S. J. Lee (2015). 'Three-dimensional digital microfluidic manipulation of droplets in oil medium.' Scientific reports 5(1): 1-11. Hua, Z., J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell and M. G. Pollack (2010). 'Multiplexed real-time polymerase chain reaction on a digital microfluidic platform.' Analytical chemistry 82(6): 2310-2316. Huang, H.-Y., H.-H. Shen, C.-H. Tien, C.-J. Li, S.-K. Fan, C.-H. Liu, W.-S. Hsu and D.-J. Yao (2015). 'Digital microfluidic dynamic culture of mammalian embryos on an electrowetting on dielectric (EWOD) chip.' PloS one 10(5): e0124196. Kalsi, S., M. Valiadi, M.-N. Tsaloglou, L. Parry-Jones, A. Jacobs, R. Watson, C. Turner, R. Amos, B. Hadwen and J. Buse (2015). 'Rapid and sensitive detection of antibiotic resistance on a programmable digital microfluidic platform.' Lab on a Chip 15(14): 3065-3075. Kim, H., M. S. Bartsch, R. F. Renzi, J. He, J. L. Van de Vreugde, M. R. Claudnic and K. D. Patel (2011). 'Automated digital microfluidic sample preparation for next-generation DNA sequencing.' JALA: Journal of the Association for Laboratory Automation 16(6): 405-414. Kim, J.-H., K.-H. Na, C. Kang, D. Jeon and Y.-S. Kim (2004). 'A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and ITO-coated glass.' Microelectronic engineering 73: 864-869. Li, W., T. Chen, Z. Chen, P. Fei, Z. Yu, Y. Pang and Y. Huang (2012). 'Squeeze-chip: a finger-controlled microfluidic flow network device and its application to biochemical assays.' Lab on a chip 12(9): 1587-1590. Li, X., H. Tian, J. Shao, Y. Ding, X. Chen, L. Wang and B. Lu (2016). 'Decreasing the Saturated Contact Angle in Electrowetting‐on‐Dielectrics by Controlling the Charge Trapping at Liquid–Solid Interfaces.' Advanced Functional Materials 26(18): 2994-3002. Lienemann, J., A. Greiner and J. G. Korvink (2006). 'Modeling, simulation, and optimization of electrowetting.' IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(2): 234-247. Lin, H.-C., Y.-J. Liu and D.-J. Yao (2010). 'Core—Shell droplets for parallel DNA ligation of an ultra-micro volume using an EWOD microfluidic system.' JALA: Journal of the Association for Laboratory Automation 15(3): 210-215. Malk, R., A. Rival, Y. Fouillet and L. Davoust (2010). EWOD in coplanar electrode configurations. International Conference on Nanochannels, Microchannels, and Minichannels. Malk, R., J. Theisen, Y. Fouillet and L. Davoust (2012). 'EWOD-driven stirring in lab-on-a-chips: Dependence on the electrodes’ geometry.' Microelectronic engineering 97: 306-310. Moon, H., A. R. Wheeler, R. L. Garrell and J. A. Loo (2006). 'An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS.' Lab on a Chip 6(9): 1213-1219. Nahar, M. M., J. B. Nikapitiya, S. M. You and H. Moon (2016). 'Droplet velocity in an electrowetting on dielectric digital microfluidic device.' Micromachines 7(4): 71. Nardecchia, M., E. Bellini, P. R. Llorca, D. Caprini, N. Lovecchio, G. Petrucci, D. Caputo, G. de Cesare and A. Nascetti (2016). 'Integration of capillary and EWOD technologies for autonomous and low-power consumption micro-analytical systems.' Procedia Engineering 168: 1370-1373. Nelson, W. C. and C.-J. C. Kim (2012). 'Droplet actuation by electrowetting-on-dielectric (EWOD): A review.' Journal of Adhesion Science and Technology 26(12-17): 1747-1771. Pollack, M. G., R. B. Fair and A. D. Shenderov (2000). 'Electrowetting-based actuation of liquid droplets for microfluidic applications.' Applied Physics Letters 77(11): 1725-1726. Rapoport, N. Y., A. M. Kennedy, J. E. Shea, C. L. Scaife and K.-H. Nam (2009). 'Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles.' Journal of Controlled Release 138(3): 268-276. Rival, A., D. Jary, C. Delattre, Y. Fouillet, G. Castellan, A. Bellemin-Comte and X. Gidrol (2014). 'An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR.' Lab on a Chip 14(19): 3739-3749. Roux, J. and J. Achard (2009). 'Forces and charges on a slightly deformed droplet in the DC field of a plate condenser.' Journal of Electrostatics 67(5): 789-798. Shah, G., J. Lei, S. Chen, C. Kim, P. Keng and R. Van Dam (2012). Automated injection from EWOD digital microfluidic chip into HPLC purification system. Proceedings of International Conference on Miniaturized Systems for Chemistry and Life Sciences (mTAS), Citeseer. Shamsi, M. H., K. Choi, A. H. Ng, M. D. Chamberlain and A. R. Wheeler (2016). 'Electrochemiluminescence on digital microfluidics for microRNA analysis.' Biosensors and Bioelectronics 77: 845-852. Shamsi, M. H., K. Choi, A. H. Ng and A. R. Wheeler (2014). 'A digital microfluidic electrochemical immunoassay.' Lab on a Chip 14(3): 547-554. Shen, H.-H., T.-Y. Su, Y.-J. Liu, H.-Y. Chang and D.-J. Yao (2013). 'Single-nucleotide polymorphism detection based on a temperature-controllable electrowetting on dielectrics digital microfluidic system.' Sens. Mater 25: 643-651. Srinivasan, V., V. K. Pamula and R. B. Fair (2004). 'An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.' Lab on a Chip 4(4): 310-315. Staicu, A. and F. Mugele (2006). 'Electrowetting-induced oil film entrapment and instability.' Physical review letters 97(16): 167801. Torabinia, M., A. Farzbod and H. Moon (2018). 'Electromechanical model to predict the movability of liquids in an electrowetting-on-dielectric microfluidic device.' Journal of Applied Physics 123(15): 154902. Volpatti, L. R. and A. K. Yetisen (2014). 'Commercialization of microfluidic devices.' Trends in biotechnology 32(7): 347-350. Wang, F.-C., F. Yang and Y.-P. Zhao (2011). 'Size effect on the coalescence-induced self-propelled droplet.' Applied Physics Letters 98(5): 053112. Wang, W. and T. B. Jones (2015). 'Moving droplets between closed and open microfluidic systems.' Lab on a Chip 15(10): 2201-2212. Westwell, M. S., M. S. Searle, D. J. Wales and D. H. Williams (1995). 'Empirical correlations between thermodynamic properties and intermolecular forces.' Journal of the American Chemical Society 117(18): 5013-5015. Wheeler, A. R., H. Moon, C. A. Bird, R. R. Ogorzalek Loo, C.-J. C. Kim, J. A. Loo and R. L. Garrell (2005). 'Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS.' Analytical chemistry 77(2): 534-540. Wheeler, A. R., H. Moon, C.-J. C. Kim, J. A. Loo and R. L. Garrell (2004). 'Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry.' Analytical chemistry 76(16): 4833-4838. Yang, J.-T., Z.-H. Yang, C.-Y. Chen and D.-J. Yao (2008). 'Conversion of surface energy and manipulation of a single droplet across micropatterned surfaces.' Langmuir 24(17): 9889-9897. Yi, U.-C. and C.-J. Kim (2006). 'Characterization of electrowetting actuation on addressable single-side coplanar electrodes.' Journal of Micromechanics and Microengineering 16(10): 2053.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79523-
dc.description.abstract本文探討以數位微流體模組之介面電極中央的孔洞進行液珠的垂直傳輸。經幾何形狀設計後的介面電極能使液珠花費較少時間變形並懸掛在介面電極中央的孔洞;接著透過數位微流體模組介面之間的電位差使液珠循電場方向通過電極中央的孔洞,完成液珠在介面的垂直傳輸—此設計並能在三種常見的數位微流體液珠環境配置下完成測試。此設計能使低表面張力(7 mN/m)的液珠在十秒內完成(數位—紙式)微流體模組間的傳輸,並且其體積回收率達97%,並能去除75%附著在其上的油滴。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:02:43Z (GMT). No. of bitstreams: 1
U0001-2709202118370200.pdf: 3850643 bytes, checksum: c0bab650b570b3dd9d8591357ee702fc (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii Notation List iv Tables of Contents v List of Figures vii List of Tables xi Chapter 1 Introduction 1 1.1 Lab-on-Chip 1 1.2 Electrowetting-on-dielectric 2 1.3 Chip-to-chip interface between EWOD and Microfluidic Modules 3 Chapter 2 Literature Review 6 2.1 EWOD and its Modules 6 2.1-1 EWOD 6 2.1-2 EWOD Devices with Chip-to-Chip Interface 9 2.2 Background Fluid Separation on Chip-to-chip Interface 15 2.3 Orifice-based chip-to-chip Interface Actuated By Electric Field 19 Chapter 3 Materials and Methods 22 3.1 Modeling 22 3.1.1 Droplet Insertion Overview 22 3.1.2 Droplet Insertion: Initial to Suspended Stage 23 3.1.3 Droplet Insertion: Suspended-to-final Stage 24 3.2 Mechanism and Electrode Design 26 3.2.1 Electrowetting-on-Dielectric (EWOD) 26 3.2.2 Terminal Electrode Design 28 3.2.3 Capillary Length 30 3.2.4 Laplace pressure 31 3.2.5 Electric-field induced droplet transportation 36 3.3 Device Fabrication 37 3.3.1 EWOD chip Fabrication 37 3.3.2 Drilling Orifice 41 3.4 Experiment Methods 42 3.4.1 EWOD with External Microfluidic Configurations 42 3.4.2 Droplets Mixing 45 3.4.3 Core-Shell Droplets 46 3.4.4 Experimental Setup for EWOD Chips 47 Chapter 4 Results and Discussion 50 4.1 Droplet Insertion 50 4.1.1 Initial to Suspended Stage 50 4.1.2 Suspended to Final Stage 52 4.2. Droplet Oil Removed Ratio and Droplet Volume Recollection Ratio 54 4.2.1. Droplet Recovery 55 4.2.2 Droplet Shell Removal 56 4.3 Application Demonstration 57 Chapter 5 Conclusion and Future Prospects 62 5.1 Conclusion 62 5.2 Future Prospects 62 Reference 64 Appendix I 73 Appendix II 77
dc.language.isoen
dc.title孔洞型數位微流體介面之液體傳輸zh_TW
dc.titleDroplet Transportation at Interface of Orifice-based Digital Microfluidic Moduleen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖英志(Hsin-Tsai Liu),陳建甫(Chih-Yang Tseng)
dc.subject.keyword電濕潤微流體,微流體模組,孔洞行模組通道,幾何形狀設計電極,油水分離,模組介面,zh_TW
dc.subject.keyworddigital microfluidics,electro wetting on dielectric module,water oil separation,orifice,chip to chip,geometry designed electrode,module,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202103408
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-2709202118370200.pdf3.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved