Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79516
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志毅(Jyh-Yih Chen)
dc.contributor.authorChih-Cheng Chengen
dc.contributor.author鄭志成zh_TW
dc.date.accessioned2022-11-23T09:02:30Z-
dc.date.available2021-11-03
dc.date.available2022-11-23T09:02:30Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-22
dc.identifier.citationReference 1. Yang, Zhanyi, et al. Rational design of short peptide variants by using Kunitzin-RE, an amphibian-derived bioactivity peptide, for acquired potent broad-spectrum antimicrobial and improved therapeutic potential of commensalism coinfection of pathogens. Journal of medicinal chemistry 62(9), 4586-4605 (2019). 2. de Breij, Anna, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Science translational medicine 10(423), eaan4044 (2018). 3. Zhong, Chao, et al. New Antimicrobial Peptides with Repeating Unit against Multidrug-Resistant Bacteria. ACS Infectious Diseases 7(6)1619-1637 (2021). 4. Elmahdi, S., DaSilva, L. V., Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food microbiology 57, 128-134 (2016). 5. Heng, Sing Peng, et al. Vibrio vulnificus: an environmental and clinical burden. Frontiers in microbiology 8, 997 (2017). 6. Beshiru, A., Okareh, O. T., Okoh, A. I., Igbinosa, E. O. Detection of antibiotic resistance and virulence genes of Vibrio strains isolated from ready‐to‐eat shrimps in Delta and Edo States, Nigeria. Journal of applied microbiology 129(1), 17-36 (2020). 7. Hsueh, Po Ren, et al. Vibrio vulnificus in Taiwan. Emerging infectious diseases 10(8), 1363-1368 (2004). 8. Yun, N. R., Kim, D. M. Vibrio vulnificus infection: a persistent threat to public health. The Korean journal of internal medicine 33(6), 1070-1078 (2018). 9. Han, F., Walker, R. D., Janes, M. E., Prinyawiwatkul, W., Ge, B. Antimicrobial susceptibilities of Vibrio parahaemolyticus and Vibrio vulnificus isolates from Louisiana Gulf and retail raw oysters. Applied environmental microbiology 73(21), 7096-7098 (2007). 10. Haftel, A., Sharman, T. Vibrio Vulnificus. StatPearls (2020). 11. Çam, S., Brinkmeyer, R. The effects of temperature, pH, and iron on biofilm formation by clinical versus environmental strains of Vibrio vulnificus. Folia microbiologica 65(3), 557-566 (2019). 12. Holmes, N. E., Charles, P. G. Safety and efficacy review of doxycycline. Clinical Medicine: Therapeutics 1, CMT-S2035 (2009). 13. KaushiK, D., Mohan, M., Borade, D. M., Swami, O. C. Ampicillin: rise fall and resurgence. Journal of clinical diagnostic research: JCDR 8(5), ME01-ME03 (2014). 14. Gagne, J. J., Maio, V., Berghella, V., Louis, D. Z., Gonnella, J. S. Prescription drug use during pregnancy: a population-based study in Regione Emilia-Romagna, Italy. European journal of clinical pharmacology 64(11), 1125-1132 (2008). 15. Katzung, B. G., Masters, S. B., Trevor, A. J. Basic clinical pharmacology. Fourteenth Edition a LANGE medical book (2004). 16. Kwa, A., Kasiakou, S. K., Tam, V. H., Falagas, M. E. Polymyxin B: similarities to and differences from colistin (polymyxin E). Expert review of anti-infective therapy 5(5), 811-821 (2007). 17. Mourtada, Rida, et al. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nature biotechnology 37(10), 1186-1197 (2019). 18. Brogden, Kim A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews microbiology 3(3), 238-250 (2005). 19. Narayana, Jayaram Lakshmaiah, et al. Short and Robust Anti-Infective Lipopeptides Engineered Based on the Minimal Antimicrobial Peptide KR12 of Human LL-37. ACS infectious diseases 7(6), 1795-1808 (2021). 20. Peng, Kuan Chieh, et al. Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PloS one 7(11), e50263 (2012). 21. Pan, C. Y., Tsai, T. Y., Su, B. C., Hui, C. F., Chen, J. Y. Study of the antimicrobial activity of tilapia piscidin 3 (TP3) and TP4 and their effects on immune functions in hybrid tilapia (Oreochromis spp.). PloS one 12(1), e0169678 (2017). 22. Hazam, P. K., Chen, J. Y. Therapeutic utility of the antimicrobial peptide Tilapia Piscidin 4 (TP4). Aquaculture Reports 17, 100409 (2020). 23. Mishra, B., Wang, G. Ab initio design of potent anti-MRSA peptides based on database filtering technology. Journal of the American Chemical Society 134(30), 12426-12429 (2012). 24. Wiegand, I., Hilpert, K., Hancock, R. E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols 3(2), 163-175 (2008). 25. Travis, Sue M, et al. Bactericidal activity of mammalian cathelicidin-derived peptides. Infection and immunity 68(5), 2748-2755 (2000). 26. Botelho, M G. Fractional inhibitory concentration index of combinations of antibacterial agents against cariogenic organisms. Journal of Dentistry 28(8), 565-570 (2000). 27. Wu, Xiaozhe, et al. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug design, development therapy 11, 939-946 (2017). 28. Parasuraman, S. Toxicological screening. Journal of pharmacology pharmacotherapeutics 2(2), 74-79 (2011). 29. OECD. Test No. 404: Acute Dermal Irritation/Corrosion. OECD Publishing. 30. OECD. Test No. 406: Skin Sensitisation: OECD Publishing.\ 31. Azzi, L., El-Alfy, M., Martel, C., Labrie, F. Gender differences in mouse skin morphology and specific effects of sex steroids and dehydroepiandrosterone. Journal of Investigative Dermatology 124(1), 22-27 (2005). 32. Huang, Han Ning, et al. Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 34(38), 10319-10327 (2013). 33. Tan, N. S., Wahli, W. Studying wound repair in the mouse. Current protocols in mouse biology 3(3), 171-185 (2013). 34. Wong, V. W., Sorkin, M., Glotzbach, J. P., Longaker, M. T., Gurtner, G. C. Surgical approaches to create murine models of human wound healing. Journal of Biomedicine Biotechnology 2011, 969618 (2010). 35. Qiao, J., Liu, Z., Cui, S., Nagy, T., Xiong, M. P. Synthesis and evaluation of an amphiphilic deferoxamine: gallium-conjugated cationic random copolymer against a murine wound healing infection model of Pseudomonas aeruginosa. Acta biomaterialia 126, 384-393 (2021). 36. Lohner, K., Staudegger, E. Are we on the threshold of the post-antibiotic era. Development of novel antimicrobial agents: emerging strategies, 1-15 (2001). 37. Liu, Ying, et al. Immunomimetic designer cells protect mice from MRSA infection. Cell 174(2), 259-270.e211 (2018). 38. Alanis, Alanis J. Resistance to antibiotics: are we in the post-antibiotic era? Archives of medical research 36(6), 697-705 (2005). 39. Krishnamurthy, M., Moore, R. T., Rajamani, S., Panchal, R. G. Bacterial genome engineering and synthetic biology: combating pathogens. BMC microbiology 16(1), 258 (2016). 40. World Health Organization. Antibacterial agents in clinical development : an analysis of the antibacterial clinical development pipeline, including tuberculosis. World Health Organization, Geneva, Switzerland (2017). 41. Soto, Sara M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4(3), 223-229 (2013). 42. Campagna, S., Saint, N., Molle, G., Aumelas, A. Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry 46(7), 1771-1778 (2007). 43. Bae, Jin Sol, et al. Piscidin: antimicrobial peptide of rock bream, Oplegnathus fasciatus. Fish shellfish immunology 51, 136-142 (2016). 44. Noga, Edward J, et al. Piscidin 4, a novel member of the piscidin family of antimicrobial peptides. Comparative Biochemistry Physiology Part B: Biochemistry Molecular Biology 152(4), 299-305 (2009). 45. Fernandes, J. M., Ruangsri, J., Kiron, V. Atlantic cod piscidin and its diversification through positive selection. Plos one 5(3), e9501 (2010). 46. Papo, N., Oren, Z., Pag, U., Sahl, H. G., Shai, Y. The consequence of sequence alteration of an amphipathic α-helical antimicrobial peptide and its diastereomers. Journal of Biological Chemistry 277(37), 33913-33921 (2002). 47. Sancho-Vaello, Enea, et al. Structural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active species. Scientific reports 7(1), 15371 (2017). 48. Brown, K. L., Hancock, R. E. Cationic host defense (antimicrobial) peptides. Current opinion in immunology 18(1), 24-30 (2006). 49. Kim, Lewis. Persister cells. Annual review of microbiology 64, 357-372 (2010). 50. Lee, M. T., Dinh, A., Nguyen, S., Krucke, G., Tran, T. Late-onset Vibrio vulnificus septicemia without cirrhosis. Proc (Bayl Univ Med Cent) 32(2), 286-288 (2019).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79516-
dc.description.abstract"由於多重抗藥性 (Multidrug resistant, MDR) 細菌感染的案件層出不窮,發展新型態的抗生素已成為當務之急。抗菌胜肽 (Antimicrobial peptides, AMPs) 是一群獨特的小分子,在抵禦病原菌入侵及先天性免疫中扮演著重要的角色。近年來,已有研究證實遍布於各種生物之間不同種類的抗菌胜肽,例如 piscidin、defensin、cathelecidin 及 cecropin等。這些分子擁有強大的抗微生物、抗腫瘤以及抗發炎的能力,使其有機會在臨床治療上發光發熱。然而,抗菌胜肽因為藥物動力學,以及在活體具有顯著的細胞毒性,因此在臨床發展上受到重重的限制。因此,我們著手進行新型抗菌胜肽的開發,改善 Tilapia piscidin 1 (TP1) 及 Tilapia piscidin (TP2) 的治療特性。在本次研究中,我們利用一對低活性的 Tilapia piscidin 衍生物,TP1 及 TP2 作為模板,並且按照我們的理念,替換序列中選定的胺基酸來恢復兩親性平衡以及正電荷。藉此我們開發出兩個高活性且低毒性的抗菌胜肽,分別為 TP1-1 及 TP2-5 。在不同的溫度、pH值、蛋白酶以及人類血清的環境中,仍保有良好的活性,且在小鼠的表皮上幾乎沒有毒性。在創傷弧菌 (Vibrio vulnificus) 感染小鼠皮膚傷口的模式中,TP1-1 (6.25 微克/老鼠) 與 doxycycline (0.048微克/老鼠) 的治療結果相似,分別救活了 20% 及 25% 的小鼠,然而 TP2-5 (12.5微克/老鼠) 的存活率則高達 80% 。總而言之,透過以上的胜肽設計策略,我們發展出在活體中具有顯著活性的抗菌胜肽。因此,本研究構想可應用於新型抗菌胜肽的開發,讓未來的臨床試驗及臨床應用所遇到的瓶頸增添一線生機。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:02:30Z (GMT). No. of bitstreams: 1
U0001-2909202109442200.pdf: 8575981 bytes, checksum: 6f3e00b2f9c8215af59cd8ec01437a53 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"Table of Contents 謝辭 I 中文摘要 II Abstract III Table of contents V 1. Introduction 1 1.1 Antibiotic resistance 1 1.2 Vibrio vulnificus 1 1.3 First-line treatment and other antibiotics 2 1.4 Antimicrobial peptide 3 1.5 Tilapia piscidin 3 1.6 The concept of antimicrobial peptide designs 4 1.7 Perspective and hypothesis 5 2. Materials and methods 6 2.1 Key resources table 6 2.2 Animals 10 2.2.1 Mice 10 2.2.2 Fish 10 2.3 Bacteria culture conditions 10 2.4 Bacterial inoculum and quantification 11 2.5 Cell culture conditions 11 2.6 CD analysis 11 2.7 Antimicrobial assay 12 2.8 Hemolysis assay 13 2.9 Time-kill kinetics 13 2.10 Resistance development 14 2.11 Effects of pH, temperature, and proteases on peptide activity 14 2.12 Human serum stability testing 14 2.13 Checkerboard assay 15 2.14 LPS neutralization assay 16 2.15 NPN 17 2.16 DiBAC 17 2.17 SEM and TEM sample preparation 18 2.18 Antibiofilm assay 18 2.19 Cell viability 19 2.20 In vivo acute dermal toxicity analysis 21 2.21 In vivo murine skin wound infection model 21 2.22 Statistics 23 3. Results 24 3.1 Design of TP1-1 and TP2-5 24 3.2 Circular dichroism spectroscopy of TP1-1 and TP2-5 25 3.3 Antimicrobial activity 25 3.4 Hemolytic analysis 26 3.5 Time killing kinetic 27 3.6 Resistance development 27 3.7 Effects of pH, temperature, proteolytic enzymes, and human serum on antimicrobial activity 28 3.8 Checkerboard assay 29 3.9 Mechanism of action 30 3.10 Morphological observation of bacteria 31 3.11 Biofilm inhibition and eradication 32 3.12 Cell viability 33 3.13 Acute dermal toxicity 34 3.14 In vivo antimicrobial activity 35 4. Discussion 36 5. Conclusion 41 6. Reference 43 7. Tables and Figures 50 8. Supplementary data 83"
dc.language.isoen
dc.title透過設計與特性分析新型羅非魚抗菌胜肽 TP1-1 及 TP2-5 用於提升創傷弧菌感染小鼠皮膚傷口之抗菌活性及治療效果zh_TW
dc.titleDesign and Characterization of Novel Tilapia Piscidin TP1-1 and TP2-5 to Improve Antimicrobial Activity and Therapeutic Efficiency against Murine Skin Wound Infection Induced by Vibrio vulnificusen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李宗徽(Hsin-Tsai Liu),潘婕玉(Chih-Yang Tseng),韓玉山,陳威戎
dc.subject.keyword抗菌胜肽,吳郭魚抗菌胜肽,多重抗藥性細菌,創傷弧菌,小鼠皮膚傷口感染模式,zh_TW
dc.subject.keywordAntimicrobial peptides (AMPs),tilapia piscidins (TPs),multidrug resistant (MDR) bacteria,Vibrio vulnificus,murine wound infection model,en
dc.relation.page102
dc.identifier.doi10.6342/NTU202103448
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-24
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2909202109442200.pdf8.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved