Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79511
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾嘉綾(Chia-Lin Chung)
dc.contributor.authorYue-Jie Chenen
dc.contributor.author陳玥潔zh_TW
dc.date.accessioned2022-11-23T09:02:19Z-
dc.date.available2026-10-01
dc.date.available2022-11-23T09:02:19Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-10-01
dc.identifier.citation吳以健。2021。水稻台中秈199號亮麗登場-國際合作且為國內第一個分子技術輔助育成抗白葉枯病之秈稻新品種。行政院農業委員會臺中區農業改良場新聞稿。 周思儀、廖大經、邱志浩、吳永培。2019。台灣高品質水稻品種-美味米台農82號。農業試驗所技術服務季刊 118:5-9。 林大鈞、游舜期、林思妤、周思儀、吳永培、曾文彬、王強生、劉依蓁、余祁暐。2018。台灣水稻誘變庫之應用性評估。農業試驗所技術服務季刊 114:1-8。 施昱全。2017。台農82號誘變系與臺灣栽培稻抗稻熱病基因座之定位。碩士論文。國立臺灣大學。臺北。 洪偉嘉。 2016。利用分子輔助回交育成臺南11號抗白葉枯病品系及多地區試驗。碩士論文。國立中興大學。臺中。 許育嘉。2010。水稻台農67號疊氮化鈉突變體與轉位子活化及轉位關係之研究。博士論文。國立中興大學。臺中。 徐仁浩、林彥蓉、郭介煒、吳永培。2012。水稻多型性分子標幟平臺建立。作物、環境與生物資訊 9:137-159。 張為斌。2015。臺農84號抗稻熱病基因座之分析定位。碩士論文。國立臺灣大學。臺北。 陳韋綸、沈偉強、張芳瑜、張為斌、余宗學、賴明信、廖睿瑜、吳志文、鍾嘉綾。2015。應用於臺灣良質米品種改良之抗稻熱病基因座分析與分子標誌開發。植物病理學會刊 24:225-240。 陳隆澤、吳志文、鍾嘉綾、廖大經。2016。水稻LTH單基因系與CO 39近同源系對台灣稻熱病菌之反應。台灣農業研究 65:8-17。 陳隆澤、陳一心、程永雄。2004。1990至2002年臺灣水稻品種 (系) 抗稻熱病檢定。中華農業研究 53:269-283。 陳隆澤、黃守宏、鄭清煥。2009。水稻病蟲害抗性檢定工作回顧。台灣水稻保護成果及新展望研討會專刊:83-103。 陳儀嘉、廖大經、施昱全、陳杰宜、蕭伊婷、吳永培、沈偉強、張為斌、鄭安秀、鍾嘉綾。2020。栽培稻臺稉8號帶抗稻熱病基因Pik-KU之探討。植物醫學 62:19-30。 楊嘉凌、鄭佳綺、賴明信、吳永培、楊志維、張素貞、羅正宗、吳志文、丁文彥、宣大平。2013。良質米育種的演變與成果。良質米產業發展研討會專輯:37-52。 賴守正。2001。稻熱病發生生態與防治方法。苗栗區農業專訊 14:21-22。 賴明信、李長沛、曾清山、顏信沐、卓緯玄、曾東海、陳治官。2007。稉型稻新品種台農75號的育成。台灣農業研究 56:79-98。 Al-Qurainy, F., Al-Hemaid, F. M., Khan, S., Ali, M. A., Tarroum, M., and Ashraf, M. 2011. Detection of sodium azide-induced mutagenicity in the regenerated shoots of Artemisia annua using internal transcribed spacer (ITS) sequences of nrDNA. Pak. J. Bot. 43.4:2183-2186. Andrade, M. A., Petosa, C., O'Donoghue, S. I., Müller, C. W., and Bork, P. 2001. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309:1-18. Ashikawa, I., Hayashi, N., Abe, F., Wu, J., and Matsumoto, T. 2012. Characterization of the rice blast resistance gene Pik cloned from Kanto51. Mol. Breed. 30:485-494. Ashikawa, I., Hayashi, N., Yamane, H., Kanamori, H., Wu, J., Matsumoto, T., Ono, K., and Yano, M. 2008. Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267. Bernoux, M., Ve, T., Williams, S., Warren, C., Hatters, D., Valkov, E., Zhang, X., Ellis, J. G., Kobe, B., and Dodds, P. 2011. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200-211. Bryan, G. T., Wu, K. S., Farrall, L., Jia, Y., Hershey, H. P., McAdams, S. A., Faulk, K. N., Donaldson, G. K., Tarchini, R., and Valent, B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033-2046. Busungu, C., Taura, S., Sakagami, J. I., and Ichitani, K. 2016. Identification and linkage analysis of a new rice bacterial blight resistance gene from XM14, a mutant line from IR24. Breed. Sci. 66:636-645. Chen, J., Peng, P., Tian, J., He, Y., Zhang, L., Liu, Z., Yin, D., and Zhang, Z. 2015a. Pike, a rice blast resistance allele consisting of two adjacent NBS–LRR genes, was identified as a novel allele at the Pik locus. Mol. Breed. 35:117. Chen, S., Su, J., Han, J., Wang, W., Wang, C., Yang, J., Zeng, L., Wang, X., Zhu, X., and Yang, C. 2014. Resistance spectrum assay and fine mapping of the blast resistance gene from a rice experimental line, IRBLta2-Re. Euphytica 195:209-216. Chen, W. L., Shen, W. C., Chang, F. Y., Chang, W. B., Yu, T. H., Lai, M. H., Liao, J. Y., Wu, C. W., and Chung, C. L. 2015b. Analysis of blast resistance genes and molecular markers development for the improvement of Taiwan high-quality rice varieties. Plant Pathology Bulletin 24:225-240. Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., and Cao, G. 2006. A B‐lectin receptor kinase gene conferring rice blast resistance. Plant J. 46:794-804. Chern, M., Xu, Q., Bart, R. S., Bai, W., Ruan, D., Sze-To, W. H., Canlas, P. E., Jain, R., Chen, X., and Ronald, P. C. 2016. A genetic screen identifies a requirement for cysteine-rich–receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity. PLOS Genet. 12:e1006049. Collard, B. C., and Mackill, D. J. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363:557-572. Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16:10881-10890. Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., Li, Q., Zhang, J., Wu, S., Milazzo, J., Mao, B., Wang, E., Xie, H., Tharreau, D., and He, Z. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962. Devi, S. J. S. R., Singh, K., Umakanth, B., Vishalakshi, B., Rao, K. V. S., Suneel, B., Sharma, S. K., Kadambari, G. K. M., Prasad, M. S., Senguttvel, P., Syamaladevi, D. P., and Madhav, M. S. 2020. Identification and characterization of a large effect QTL from Oryza glumaepatula revealed Pi68(t) as putative candidate gene for rice blast resistance. Rice 13:17. Drake, J. W., Charlesworth, B., Charlesworth, D., and Crow, J. F. 1998. Rates of spontaneous mutation. Genetics 148:1667-1686. Feldman, A. B., Leung, H., Baraoidan, M., Elmido-Mabilangan, A., Canicosa, I., Quick, W. P., Sheehy, J., and Murchie, E. H. 2017. Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number. Front. Plant Sci. 8:1883. Fukuoka, S., Saka, N., Koga, H., Ono, K., Shimizu, T., Ebana, K., Hayashi, N., Takahashi, A., Hirochika, H., and Okuno, K. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998-1001. Fukuta, Y., Koga, I., Ung, T., Sathya, K., Kawasaki-Tanaka, A., Koide, Y., Kobayashi, N., Obara, M., Yadana, H., and Hayashi, N. 2014. Pathogenicity of rice blast (Pyricularia oryzae Cavara) isolates from Cambodia. Jpn. Agric. Res. Q. 48:155-166. Guo, H., Mendrikahy, J. N., Xie, L., Deng, J., Lu, Z., Wu, J., Li, X., Shahid, M. Q., and Liu, X. 2017. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis. Sci. Rep. 7:40139. Haque, E., Tabuchi, H., Monden, Y., Suematsu, K., Shirasawa, K., Isobe, S., and Tanaka, M. 2020. QTL analysis and GWAS of agronomic traits in sweetpotato (Ipomoea batatas L.) using genome wide SNPs. Breed. Sci. 70:283-291. Holme, I. B., Gregersen, P. L., and Brinch-Pedersen, H. 2019. Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front. Plant Sci. 10:1468. Hua, L., Wu, J., Chen, C., Wu, W., He, X., Lin, F., Wang, L., Ashikawa, I., Matsumoto, T., Wang, L., and Pan, Q. 2012. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor. Appl. Genet. 125:1047-1055. Hwang, J. E., Ahn, J. W., Kwon, S. J., Kim, J. B., Kim, S. H., Kang, S. Y., and Kim, D. S. 2014. Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation. Mol. Biol. Rep. 41:7671-7681. Inahashi, H., Shelley, I. J., Yamauchi, T., Nishiuchi, S., Takahashi-Nosaka, M., Matsunami, M., Ogawa, A., Noda, Y., and Inukai, Y. 2018. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Plant Physiol. 164:216-225. Inukai, T., Nelson, R. J., Zeigler, R. S., Sarkarung, S., Mackill, D. J., Bonman, J. M., Takamure, I., and Kinoshita, T. 1996. Genetic analysis of blast resistance in tropical rice cultivars using near-isogenic lines. Pages 447-450 in: G. S. Khush, G. Hettel and T. Rola eds., Rice Genetics III. International Rice Research Institute, Manila, Philipines. IRRI. 2013. Standard evaluation system for rice. 5th ed. International Rice Research Institute, Manila, Philipines. Ishikawa, S., Ishimaru, Y., Igura, M., Kuramata, M., Abe, T., Senoura, T., Hase, Y., Arao, T., Nishizawa, N. K., and Nakanishi, H. 2012. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc. Natl. Acad. Sci. U.S.A. 109:19166. Jatayev, S., Kurishbayev, A., Zotova, L., Khasanova, G., Serikbay, D., Zhubatkanov, A., Botayeva, M., Zhumalin, A., Turbekova, A., Soole, K., Langridge, P., and Shavrukov, Y. 2017. Advantages of amplifluor-like SNP markers over KASP in plant genotyping. BMC Plant Biol. 17:254. Jeng, T. L., Lin, Y. W., Wang, C. S., and Sung, J. M. 2012. Comparisons and selection of rice mutants with high iron and zinc contents in their polished grains that were mutated from the indica type cultivar IR64. J. Food Compos. Anal. 28:149-154. Jia, Y., and Martin, R. 2008. Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta–mediated resistance. Mol. Plant Microbe Interact. 21:396-403. Johnston, H. R., Keats, B. J. B., and Sherman, S. L. 2019. 12-Population genetics. Pages 359-373 in: R. E. Pyeritz, B. R. Korf and W. W. Grody, eds., Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics, 7th ed. Elsevier Inc., United States. Joshi, S., Dhatwalia, S., Kaachra, A., Sharma, K., and Rathour, R. 2019. Genetic and physical mapping of a new rice blast resistance specificity Pi-67 from a broad spectrum resistant genotype Tetep. Euphytica 215:9. Kalia, S., and Rathour, R. 2019. Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. Biotech. 9:209. Khanna, A., Sharma, V., Ellur, R. K., Shikari, A. B., Gopala Krishnan, S., Singh, U. D., Prakash, G., Sharma, T. R., Rathour, R., Variar, M., Prashanthi, S. K., Nagarajan, M., Vinod, K. K., Bhowmick, P. K., Singh, N. K., Prabhu, K. V., Singh, B. D., and Singh, A. K. 2015. Development and evaluation of near-isogenic lines for major blast resistance gene(s) in Basmati rice. Theor. Appl. Genet. 128:1243-1259. Khush, G. S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59:1-6. Kim, B., Woo, S., Kim, M. J., Kwon, S. W., Lee, J., Sung, S. H., and Koh, H. J. 2018. Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.). Food Chem. 241:154-162. Kim, S. H., Song, M., Lee, K. J., Hwang, S. G., Jang, C. S., Kim, J. B., Kim, S. H., Ha, B. K., Kang, S. Y., and Kim, D. S. 2012. Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation. Mol. Biol. Rep. 39:11231-11248. Kiyosawa, S. 1987. With genetic view on the mechanism of resistance and virulence. Jpn. J. Genet. 41:89–92. Koide, Y., Telebanco-Yanoria, M. J., Fukuta, Y., and Kobayashi, N. 2013. Detection of novel blast resistance genes, Pi58(t) and Pi59(t), in a Myanmar rice landrace based on a standard differential system. Mol. Breed. 32:241-252. Kozjak, P., and Meglič, V. 2012. Mutagenesis in plant breeding for disease and pest resistance. Pages 195-220 in: R. Mishra ed., Mutagenesis. IntechOpen, London, UK. Kumar, P., Pathania, S., Katoch, P., Sharma, T., Plaha, P., and Rathour, R. 2010. Genetic and physical mapping of blast resistance gene Pi-42(t) on the short arm of rice chromosome 12. Mol. Breed. 25:217-228. Lei, C., Hao, K., Yang, Y., Ma, J., Wang, S., Wang, J., Cheng, Z., Zhao, S., Zhang, X., Guo, X., Wang, C., and Wan, J. 2013. Identification and fine mapping of two blast resistance genes in rice cultivar 93-11. Crop J. 1:2-14. Li, C., Liu, Y., Shen, W. H., Yu, Y., and Dong, A. 2018. Chromatin-remodeling factor OsINO80 is involved in regulation of gibberellin biosynthesis and is crucial for rice plant growth and development. J. Integr. Plant. Biol. 60:144-159. Li, W., Lei, C., Cheng, Z., Jia, Y., Huang, D., Wang, J., Wang, J., Zhang, X., Su, N., and Guo, X. 2008. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol. Breed. 22:141-149. Li, X., Wang, W., Wang, Z., Li, K., Lim, Y. P., and Piao, Z. 2015. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa. Front. Plant Sci. 6:432. Liao, D. J., Chen Lung Che, Wu, C. W., and Chung, C. L. 2016. Response of rice varieties ‘LTH’ monogenic lines and ‘CO 39’ near-isogenic lines to rice blast. Taiwan Agric. Res. 65:8–17. Lin, D. G., Chou, S. Y., Wang, A. Z., Wang, Y. W., Kuo, S. M., Lai, C. C., Chen, L. J., and Wang, C. S. 2014a. A proteomic study of rice cultivar TNG67 and its high aroma mutant SA0420. Plant Sci. 214:20-28. Lin, G. C. 2014b. The epidemic of rice blast in Yulin, Chiayi, and Tainan and integrated disease management. Tainan Dist. Agric. Newsl. 87:22-25. Lin, K. C., Jwo, W. S., Chandrika, N. N. P., Wu, T. M., Lai, M. H., Wang, C. S., and Hong, C. Y. 2016. A rice mutant defective in antioxidant-defense system and sodium homeostasis possesses increased sensitivity to salt stress. Biol. Plant. 60:86-94. Liu, L., Jin, L., Huang, X., Geng, Y., Li, F., Qin, Q., Wang, R., Ji, S., Zhao, S., Xie, Q. I., Wei, C., Xie, C., Ding, B., and Li, Y. I. 2014. OsRFPH2-10, a ring-H2 finger E3 ubiquitin ligase, is involved in rice antiviral defense in the early stages of rice dwarf virus infection. Mol. Plant 7:1057-1060. Liu, R., Gong, J., Xiao, X., Zhang, Z., Li, J., Liu, A., Lu, Q., Shang, H., Shi, Y., Ge, Q., Iqbal, M. S., Deng, X., Li, S., Pan, J., Duan, L., Zhang, Q., Jiang, X., Zou, X., Hafeez, A., Chen, Q., Geng, H., Gong, W., and Yuan, Y. 2018. GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front. Plant Sci. 9: 1067. Liu, X., Yang, Q., Lin, F., Hua, L., Wang, C., Wang, L., and Pan, Q. 2007. Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol. Genet. Genom. 278:403-410. Liu, Y., Liu, B., Zhu, X., Yang, J., Bordeos, A., Wang, G., Leach, J. E., and Leung, H. 2013. Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor. Appl. Genet. 126:985-998. Mackill, D. J., and Ni, J. 2008. Molecular mapping and marker-assisted selection for major-gene traits in rice. Pages 137-151 in: G. S. Khush, D. S. Brar and B. Hardy eds., Rice Genetics IV. International Rice Research Institute, Manila, Philippines. Maekawa, T., Cheng, W., Spiridon, L. N., Töller, A., Lukasik, E., Saijo, Y., Liu, P., Shen, Q.-H., Micluta, M. A., and Somssich, I. 2011. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9:187-199. Mandal, A., Mishra, A. K., Dulani, P., Muthamilarasan, M., Shweta, S., and Prasad, M. 2018. Identification, characterization, expression profiling, and virus-induced gene silencing of armadillo repeat-containing proteins in tomato suggest their involvement in tomato leaf curl New Delhi virus resistance. Funct. Integr. Genomics 18:101-111. Meng, X., Xiao, G., Telebanco-Yanoria, M. J., Siazon, P. M., Padilla, J., Opulencia, R., Bigirimana, J., Habarugira, G., Wu, J., Li, M., Wang, B., Lu, G. D., and Zhou, B. 2020. The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita. Rice 13:19. Muñoz, M. C. 2008. The effect of temperature and relative humidity on the airbone concentration of Pyricularia oryzae spores and the development of rice blast in southern Spain. Span. J. Agric. Res. :61-69. Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., and Baloch, F. S. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32:261-285. Nakata, Y., Ueno, M., Kihara, J., Ichii, M., Taketa, S., and Arase, S. 2008. Rice blast disease and susceptibility to pests in a silicon uptake-deficient mutant lsi1 of rice. J. Crop Prot. 27:865-868. Nakhoda, B., Leung, H., Mendioro, M. S., Mohammadi-nejad, G., and Ismail, A. M. 2012. Isolation, characterization, and field evaluation of rice (Oryza sativa L., Var. IR64) mutants with altered responses to salt stress. Field Crops Res. 127:191-202. Nalley, L., Tsiboe, F., Durand-Morat, A., Shew, A., and Thoma, G. 2016. Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLOS ONE 11:e0167295. Naqvi, N. I., and Chattoo, B. B. 1996. Molecular genetic analysis and sequence characterized amplified region-assisted selection of blast resistance. Pages 570-576 in: G. S. Khush, G. Hettel and T. Rola eds., Rice Genetics III. International Rice Research Institute, Manila, Philipines. Ning, Y., Wang, R., Shi, X., Zhou, X., and Wang, G. L. 2016. A layered defense strategy mediated by rice E3 ubiquitin ligases against diverse pathogens. Mol. Plant 9:1096-1098. Olsen, O., X. Wang, and D. von Wettstein. 1993. Sodium azide mutagenesis: preferential generation of A.T-->G.C transitions in the barley Ant18 gene. Proc. Natl. Acad. Sci. USA 90:8043-7. Park, C. H., Chen, S., Shirsekar, G., Zhou, B., Khang, C. H., Songkumarn, P., Afzal, A. J., Ning, Y., Wang, R., Bellizzi, M., Valent, B., and Wang, G. L. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748-4762. Park, C. H., Shirsekar, G., Bellizzi, M., Chen, S., Songkumarn, P., Xie, X., Shi, X., Ning, Y., Zhou, B., Suttiviriya, P., Wang, M., Umemura, K., and Wang, G. L. 2016. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLOS Pathog. 12:e1005529. Phanchaisri, B., Samsang, N., Yu, L., Singkarat, S., and Anuntalabhochai, S. 2012. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants. Mutat. Res. 734:56-61. RStudio Team. 2020. RStudio: Integrated Development for R. PBC, Boston, MA. Ruengphayak, S., Ruanjaichon, V., Saensuk, C., Phromphan, S., Tragoonrung, S., Kongkachuichai, R., and Vanavichit, A. 2015. Forward screening for seedling tolerance to Fe toxicity reveals a polymorphic mutation in ferric chelate reductase in rice. Rice 8:3. Sallaud, C., Lorieux, M., Roumen, E., Tharreau, D., Berruyer, R., Svestasrani, P., Garsmeur, O., Ghesquière, A., and Notteghem, J. L. 2003. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor. Appl. Genet. 106:794-803. Seo, J., Bordiya, Y., Lee, C., and Koh, H. J. 2017. Fine mapping and candidate gene analysis of small round grain mutant in rice. Plant Breed. Biotech. 5:354-362. Sharma, M., and Pandey, G. K. 2016. Expansion and function of repeat domain proteins during stress and development in plants. Front. Plant Sci. 6:1218. Sharma, T. R., Rai, A. K., Gupta, S. K., Vijayan, J., Devanna, B. N., and Ray, S. 2012. Rice blast management through host-plant resistance: retrospect and prospects. Agr. Res. 1:37-52. Shin, Y., Jeon, Y., Kang, K., Seo, Y., and Jeung, J. 2009. Variation of agronomic traits of rice mutant lines induced by sodium azide. Korean J. Breed. Sci. 41:92-100. Shinada, H., Yamamoto, T., Yamamoto, E., Hori, K., Hirayama, Y., Maekawa, T., Kiuchi, H., Sato, H., and Sato, T. 2015. Quantitative trait loci for whiteness of cooked rice detected in improved rice cultivars in Hokkaido. Breed. Sci. 65:201-207. Singh, R.B., R.S.N. Pillai, and H. Kumar. 1981. Induced translocations in Safflower. Corp Sci. 21:811-815. Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., Uemura, A., Utsushi, H., Tamiru, M., Takuno, S., Innan, H., Cano, L. M., Kamoun, S., and Terauchi, R. 2013. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74:174-183. Takuno, S., Terauchi, R., and Innan, H. 2012. The power of QTL mapping with RILs. PLOS ONE 7:e46545. Till, B.J., J. Cooper, T.H. Tai, P. Colowit, E.A. Greene, S. Henikoff, and L. Comai. 2007. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 7:19. Tu, Y., Jiang, A., Gan, L., Hossain, M., Zhang, J., Peng, B., Xiong, Y., Song, Z., Cai, D., Xu, W., Zhang, J., and He, Y. 2014. Genome duplication improves rice root resistance to salt stress. Rice 7:1-13. Variar, M., Cruz, C. M. V., Carrillo, M. G., Bhatt, J. C., and Sangar, R. B. S. 2009. Rice blast in India and strategies to develop durably resistant cultivars. Pages 359-373 in: G.L. Wang and B. Valent, eds., Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, Dordrecht, Netherlands. Viana, V. E., Pegoraro, C., Busanello, C., and Costa de Oliveira, A. 2019. Mutagenesis in rice: The basis for breeding a new super plant. Front. Plant Sci. 10:1326. Wang, C. S., Tseng, T. H., and Lin, C. Y. 2002. Rice biotech research at the Taiwan Agricultural Research Institute. Asia-Pacific Biotech News 6:950-956. Wang, J., Qu, B., Dou, S., Li, L., Yin, D., Pang, Z., Zhou, Z., Tian, M., Liu, G., Xie, Q., Tang, D., Chen, X., and Zhu, L. 2015a. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity. BMC Plant Biol. 15:49. Wang, J. C., Correll, J. C., and Jia, Y. 2015b. Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays. J. Crop Prot. 72:132-138. Wang, L., Xu, X., Lin, F., and Pan, Q. 2009. Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus. Phytopathology 99:900-905. Wang, N., Long, T., Yao, W., Xiong, L., Zhang, Q., and Wu, C. 2013. Mutant resources for the functional analysis of the rice genome. Mol. Plant 6:596-604. Wu, J. L., Wu, C., Lei, C., Baraoidan, M., Bordeos, A., Madamba, M. R., Ramos-Pamplona, M., Mauleon, R., Portugal, A., Ulat, V. J., Bruskiewich, R., Wang, G., Leach, J., Khush, G., and Leung, H. 2005. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol. Biol. 59:85-97. Xie, Z., Yan, B., Shou, J., Tang, J., Wang, X., Zhai, K., Liu, J., Li, Q., Luo, M., Deng, Y., and He, Z. 2019. A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 374:20180308. Xu, J., Shi, S., Wang, L., Tang, Z., Lv, T., Zhu, X., Ding, X., Wang, Y., Zhao, F. J., and Wu, Z. 2017. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol. 215:1090-1101. Xueyan Wang, S. L., Jichun Wang, Jianbing Ma, Tracy Bianco and Yulin Jia. 2014. Current advances on genetic resistance to rice blast disease. Pages 195-217 in: W. Yan ed., Rice-Germplasm, Genetics and Improvement. IntechOpen, London, UK. Yoshida, K., and Miyashita, N. T. 2009. DNA polymorphism in the blast disease resistance gene Pita of the wild rice Oryza rufipogon and its related species. Genes Genet. Syst. 84:121-136. Yu, Z. H., Mackill, D. J., Bonman, J. M., McCouch, S. R., Guiderdoni, E., Notteghem, J. L., and Tanksley, S. D. 1996. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.). Theor. Appl. Genet. 93:859-863. Zeng, L. R., Qu, S., Bordeos, A., Yang, C., Baraoidan, M., Yan, H., Xie, Q., Nahm, B. H., Leung, H., and Wang, G. L. 2004. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795-2808. Zhai, C., Lin, F., Dong, Z., He, X., Yuan, B., Zeng, X., Wang, L., and Pan, Q. 2011. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 189:321-334. Zhai, C., Zhang, Y., Yao, N., Lin, F., Liu, Z., Dong, Z., Wang, L., and Pan, Q. 2014. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLOS ONE 9:e98067. Zhao, H., Wang, X., Jia, Y., Minkenberg, B., Wheatley, M., Fan, J., Jia, M. H., Famoso, A., Edwards, J. D., Wamishe, Y., Valent, B., Wang, G. L., and Yang, Y. 2018. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat. Commun. 9:2039. Zhou, Y., Lei, F., Wang, Q., He, W., Yuan, B., and Yuan, W. 2020. Identification of novel alleles of the rice blast-resistance gene Pi9 through sequence-based allele mining. Rice 13:80. Zhuang, J. Y., Ma, W. B., Wu, J. L., Chai, R. Y., Lu, J., Fan, Y. Y., Jin, M. Z., Leung, H., and Zheng, K. L. 2002. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice. Euphytica 128:363-370. Zhuang, J. Y., Lu, J., Qian, H. R., Lin, H. X., and Zheng, K. L. 1998. Tagging of blast resistance gene(s) to DNA markers and marker-assisted selection (MAS) in rice improvement. Pages 55-61 in: IAEA-TECDOC:1010. International Atomic Energy Agency (IAEA), Vienna, Austria.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79511-
dc.description.abstract"水稻是重要糧食作物之一,由Pyricularia oryzae引起的稻熱病嚴重影響水稻生產,而發展抗病品種為最有效且環保的防治方法。水稻臺農82號為對稻熱病感病之稉稻,經過連續五代疊氮化鈉誘變及病圃篩選後,獲得11個抗稻熱病誘變系。本研究針對臺農82號及此11個抗病誘變系,於已知之抗稻熱病基因座Pi2/9、Pik、Pita及Ptr進行解序,比對後發現臺農82號帶有Pik-s,但在Pi2/9、Pita及Ptr為感病等位基因,11個誘變系則皆帶有Pik-s及Pita抗病等位基因,而在Pi2/9及Ptr呈現不同變異,其中WM1363、WM1415及WM1543帶有抗病Ptr等位基因。針對此11抗病誘變系接種3株不同生理小種之本土菌株後發現,WM1363、WM1370及WM1397對3株菌均呈現抗病表現。針對具高度抗性的WM1370,嘉義農業試驗分所將其與感病秈稻CO39雜交後之94個F2子代進行集群分離分析,發現第12號染色體2.3-19.7 Mb之區間可能與抗性有關。本研究首先針對WM1370進行6株本土強病原性菌株之接種,發現其具有廣譜抗性。為探討WM1370抗性遺傳控制情形,本研究以CO39 x WM1370之F2:3-F2:5子代於2019-2021年稻熱病旱田病圃分析其抗病表現,同時使用5組簡單重複序列 (simple sequence repeat, SSR)、9組競爭性等位基因特異性 (KBioscience competitive allele-specific PCR, KASP) 及10組插入/缺失 (insertion/deletion, InDel) 分子標誌進行基因型鑑定。首先由192個F2:3子代進行連鎖分析,初步發現抗性基因座與位於4.7 Mb、10.4 Mb及16.1 Mb處之分子標誌有連鎖關係。接著篩選出5個此三區段為異型合子之F2:3品系,使用其衍生之785株F2:4子代進行連鎖分析,發現抗性與4.7 Mb、7.4 Mb、10.4 Mb、11.8 Mb及14.0 Mb皆有連鎖,爾後篩選表現型為抗性且目標區段為異型合子之13個F2:4個體,由其所建立之413株F2:5重組子代,連同8個F2:3品系之330株F2:4子代進行精細定位,據此將WM1370之抗性區段縮小至約10.7-14.6 Mb區間,候選基因包括Ptr (與抗病品系Katy之等位蛋白具有一個胺基酸差異L763F)。WM1370於第12條染色體上橫跨Pita (10.6 Mb) 及10.7-14.6 Mb抗病基因座之區段,以及本研究新開發與抗病區段緊密連鎖之分子標誌,皆提供未來WM1370在育種應用上的重要基礎,希望藉此擴充臺灣水稻抗稻熱病基因庫,促進抗病新品種育成。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:02:19Z (GMT). No. of bitstreams: 1
U0001-0110202111300700.pdf: 19191206 bytes, checksum: 947f0737d4ddda38b918b215708dec0e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 # 致謝 I 中文摘要 II 英文摘要 IV 表目錄 VIII 圖目錄 IX 第1章 前人研究 1 1.1 稻熱病之發生與危害 1 1.2 水稻抗稻熱病基因 1 1.3 分子標誌輔助育種 3 1.4 誘變育種 4 1.5 數量性狀基因座定位 6 1.6 臺灣水稻雜交育種及誘變育種 7 1.7 水稻臺農82號及其誘變系 8 第2章 研究背景及動機 10 第3章 材料與方法 11 3.1 植物材料 11 3.2 抗稻熱病基因座之定序 11 3.3 基因型分析 12 3.3.1 水稻DNA萃取 12 3.3.2 SSR分子標誌之分析 12 3.3.3 KASP分子標誌之設計及分析 13 3.3.4 InDel分子標誌之設計及分析 14 3.3.5 CO39 x WM1370族群基因型分析 14 3.4 表現型分析 14 3.4.1 水稻栽種 14 3.4.2 供試稻熱病菌、培養條件與接種源製備 15 3.4.3 人工接種抗性檢定 15 3.4.4 稻熱病圃抗性檢定 16 3.5 統計分析 17 第4章 結果 18 4.1 抗稻熱病基因座之定序分析 18 4.2 分子標誌之開發與測試 19 4.3 人工接種抗性檢定 20 4.3.1 臺農82號11個誘變系之接種結果 20 4.3.2 CO39及WM1370之接種結果 21 4.4 臺農82號誘變系WM1370之抗病基因座定位 22 4.4.1 2019年F2:3族群之抗性檢定、連鎖分析及重組子代篩選 22 4.4.2 2020年F2:4族群之抗性檢定、連鎖分析及重組子代篩選 22 4.4.3 2021年F2:4及F2:5族群之抗性檢定、連鎖分析及精細定位 23 第5章 討論 25 參考文獻 32 附表 42 附圖 76 附錄 120
dc.language.isozh-TW
dc.title水稻臺農82號誘變系之抗稻熱病基因座定位zh_TW
dc.titleMapping of rice blast resistance loci in Tainung 82 mutant linesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈偉強(Hsin-Tsai Liu),吳永培(Chih-Yang Tseng),董致韡
dc.subject.keyword稻熱病菌,抗病基因,疊氮化鈉誘變,精細定位,分子標誌,zh_TW
dc.subject.keywordPyricularia oryzae,resistance gene,sodium azide mutagenesis,fine-mapping,molecular markers,en
dc.relation.page127
dc.identifier.doi10.6342/NTU202103492
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
dc.date.embargo-lift2026-10-01-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-0110202111300700.pdf
  此日期後於網路公開 2026-10-01
18.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved