請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79510完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王泰典(Tai-Tien Wang) | |
| dc.contributor.author | You-Jie Huang | en |
| dc.contributor.author | 黃宥傑 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:02:17Z | - |
| dc.date.available | 2022-10-01 | |
| dc.date.available | 2022-11-23T09:02:17Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-05 | |
| dc.identifier.citation | 1. Adachi, J., et al. (2007). 'Computer simulation of hydraulic fractures.' International Journal of Rock Mechanics and Mining Sciences 44(5): 739-757. 2. Al-Busaidi, A. (2005). 'Distinct element modeling of hydraulically fractured Lac du Bonnet granite.' Journal of Geophysical Research 110(B6). 3. Allmendinger, R. W. (1998). 'Inverse and forward numerical modeling of trishear fault-propagation folds.' Tectonics 17(4): 640-656. 4. Asadollahi, P. and F. Tonon (2010). 'Constitutive model for rock fractures: Revisiting Barton's empirical model.' Engineering Geology 113(1-4): 11-32. 5. Barton, C. A., et al. (1995). 'Fluid flow along potentially active faults in crystalline rock.' Geology 23(8): 683-686. 6. Brudy, M., et al. (1997). 'Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength.' Journal of Geophysical Research: Solid Earth 102(B8): 18453-18475. 7. Chang, C., et al. (2010). 'Interaction between regional stress state and faults: Complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea.' Tectonophysics 485(1-4): 164-177. 8. Chitrala, Y., et al. (2013). 'An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions.' Journal of Petroleum Science and Engineering 108: 151-161. 9. Conrad, O., et al. (2015). 'System for Automated Geoscientific Analyses (SAGA) v. 2.1.4.' Geoscientific Model Development 8(7): 1991-2007. 10. Fan, T.-g. and G.-q. Zhang (2014). 'Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures.' Energy 74: 164-173. 11. Fatahi, H., et al. (2017). 'Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture.' Journal of Natural Gas Science and Engineering 37: 409-424. 12. Fuchs, K. and B. Muller (2001). 'World Stress Map of the Earth: a key to tectonic processes and technological applications.' Naturwissenschaften 88(9): 357-371 13. Germanovich, L. and A. Dyskin (2000). 'Fracture mechanisms and instability of openings in compression.' International Journal of Rock Mechanics and Mining Sciences 37(1-2): 263-284. 14. Goodman, R. E. (1989). Introduction to rock mechanics, Wiley New York. 15. Gordeliy, E. and E. Detournay (2011). 'A fixed grid algorithm for simulating the propagation of a shallow hydraulic fracture with a fluid lag.' International Journal for Numerical and Analytical Methods in Geomechanics 35(5): 602-629. 16. Grasselli, G., et al. (2014). 'Influence of pre-existing discontinuities and bedding planes on hydraulic fracturing initiation.' European Journal of Environmental and Civil Engineering 19(5): 580-597. 17. Guo, T., et al. (2014). 'Experimental study of hydraulic fracturing for shale by stimulated reservoir volume.' Fuel 128: 373-380. 18. Haimson, B. (2006). 'True Triaxial Stresses and the Brittle Fracture of Rock.' Pure and Applied Geophysics 163(5-6): 1101-1130. 19. Haimson, B. and J. Kovacich (2003). 'Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts.' Engineering Geology 69(3-4): 219-231. 20. Haimson, B. C. and F. H. Cornet (2003). 'ISRM Suggested Methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF).' International Journal of Rock Mechanics and Mining Sciences 40(7-8): 1011-1020. 21. Hoek, E. and Z. Bieniawski (1984). 'Brittle fracture propagation in rock under compression.' International Journal of Fracture 26(4): 276-294. 22. Huang, S., et al. (2017). 'Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing.' Journal of Natural Gas Science and Engineering 43: 69-80. 23. Ishida, T., et al. (2019). 'Crack Expansion and Fracturing Mode of Hydraulic Refracturing from Acoustic Emission Monitoring in a Small-Scale Field Experiment.' Rock Mechanics and Rock Engineering 52(2): 543-553. 24. Kourkoulis, S. K., et al. (2013). 'The standardized Brazilian disc test as a contact problem.' International Journal of Rock Mechanics and Mining Sciences 57: 132-141. 25. Li, D. and L. N. Y. Wong (2012). 'The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights.' Rock Mechanics and Rock Engineering 46(2): 269-287. 26. Li, L. C., et al. (2012). 'Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique.' Rock Mechanics and Rock Engineering. 27. Liu, X., et al. (2020). 'Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling.' Engineering Fracture Mechanics 238. 28. Markides, C. F. and S. K. Kourkoulis (2016). 'The influence of jaw's curvature on the results of the Brazilian disc test.' Journal of Rock Mechanics and Geotechnical Engineering 8(2): 127-146. 29. McKenzie, D. (1972). 'Active tectonics of the Mediterranean region.' Geophysical Journal International 30(2): 109-185. 30. Sampath, K. H. S. M., et al. (2018). 'Theoretical overview of hydraulic fracturing break-down pressure.' Journal of Natural Gas Science and Engineering 58: 251-265. 31. Sarmadivaleh, M. and V. Rasouli (2014). 'Test Design and Sample Preparation Procedure for Experimental Investigation of Hydraulic Fracturing Interaction Modes.' Rock Mechanics and Rock Engineering 48(1): 93-105. 32. Secchi, S. and B. A. Schrefler (2012). 'A method for 3-D hydraulic fracturing simulation.' International Journal of Fracture 178(1-2): 245-258. 33. Stephansson, O. (1983). Rock stress measurement by sleeve fracturing. 5th ISRM Congress, International Society for Rock Mechanics and Rock Engineering. 34. Suppe, J. (2014). 'Fluid overpressures and strength of the sedimentary upper crust.' Journal of Structural Geology 69: 481-492. 35. Tang, C., et al. (2000). 'Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity.' International Journal of Rock Mechanics and Mining Sciences 37(4): 555-569. 36. Tsuji, Y., et al. (1993). 'Discrete particle simulation of two-dimensional fluidized bed.' Powder technology 77(1): 79-87. 37. Weng, X., et al. (2011). Modeling of hydraulic fracture network propagation in a naturally fractured formation. SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers. 38. Yang, S., et al. (2008). 'Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression.' International Journal of Solids and Structures 45(17): 4796-4819. 39. Yang, S. Q., et al. (2008). 'Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression.' International Journal of Solids and Structures 45(17): 4796-4819. 40. Yang, Y.-R., et al. (2013). 'Inversion for absolute deviatoric crustal stress using focal mechanisms and coseismic stress changes: The 2011M9 Tohoku-oki, Japan, earthquake.' Journal of Geophysical Research: Solid Earth 118(10): 5516-5529. 41. Yoon, J. S., et al. (2014). 'Numerical Investigation on Stress Shadowing in Fluid Injection-Induced Fracture Propagation in Naturally Fractured Geothermal Reservoirs.' Rock Mechanics and Rock Engineering 48(4): 1439-1454. 42. Yoon, J. S., et al. (2015). 'Discrete element modeling of cyclic rate fluid injection at multiple locations in naturally fractured reservoirs.' International Journal of Rock Mechanics and Mining Sciences 74: 15-23. 43. You, M. (2009). 'True-triaxial strength criteria for rock.' International Journal of Rock Mechanics and Mining Sciences 46(1): 115-127. 44. Zang, A. and O. Stephansson (2009). Stress field of the Earth's crust, Springer Science Business Media. 45. Zoback, M. D., et al. (2003). 'Determination of stress orientation and magnitude in deep wells.' International Journal of Rock Mechanics and Mining Sciences 40(7-8): 1049-1076. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79510 | - |
| dc.description.abstract | 現地應力為地球科學、大地工程、資源工程等跨領域高度關注的資訊,不僅反映地殼受力狀況,提供地震災害研究與預測的依據,更影響地下隧道、坑室工程開挖穩定與安全,對於地球資源的開發或是廢棄物的地下存放等潛在應用,現地應力影響裂隙岩體的水力特性,因而成為近期大地資訊調查的重要課題,其中在水力破裂則為場址尺度調查現地應力常用的技術,除了鑽孔、封塞、灌注等相關技術,其調查現地應力的精準性建立在許多有關岩體條件的假設上,包括岩石材料的異向、異質性、鑽孔周圍是否存在裂隙、孔隙等,皆影響調查結果的闡釋與評估。 本研究旨在研發岩石三維水力破裂數值模擬技術,可以模擬水力破裂試驗過程注水壓力、流量曲線、岩石破裂過程,以及其受到現地應力的影響;據以探討水力破裂試驗應用於現地應力調查時受到周圍裂隙、孔隙存在以及岩質差異的影響,以為後續提出試驗結果的修正方式。本研究中數值模擬軟體為利用離散元素法(Discrete Element Method)為基礎的顆粒流軟體(Particle Flow Code)進行模擬技術的開發,物理模型試驗延續童舒暘(2020)的流程通過改變水泥砂漿配比提高滲透性進行實驗室水力破裂試驗。 研究中所開發的Neighbor Method能夠考量滲流以及破裂裂縫生衍情形並進行水力破裂試驗水壓力曲線中破裂水壓力與再開水壓力的模擬,而模擬結果中破裂水壓力隨著圍壓增加而提升以及模型中隨著軸差應力的變化裂隙有一定的規律兩者符合物理現象。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:02:17Z (GMT). No. of bitstreams: 1 U0001-0110202113403800.pdf: 5876723 bytes, checksum: 910c22fba171d6bfef4473308289cc99 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 中文摘要 英文摘要 誌謝 圖目錄 表目錄 第一章 前言 1.1 研究動機 1.2 研究目的 1.3 本文內容 第二章 文獻回顧 2.1 現地應力與最終岩石應力模型 2.2 水力破裂法 2.3 水力破裂影響因素試驗探索 2.3.1 原生裂隙分布 2.3.2 試體材料 2.4 水力破裂影響因素數值模擬 第三章 研究方法論 3.1 數值模擬 3.1.1 鍵結型式選擇 3.1.2 模擬概念 3.1.3 模型假設 3.1.4 Neighbor Method 3.2 物理模型試驗方法 3.2.1 實驗儀器 3.2.2 試體製備 3.2.3 試驗流程 第四章 結果與討論 4.1 數值模擬 4.1.1 材料性質 4.1.2 Neighbor Method 4.1.3 現地應力與注水設置 4.1.4 滲流行為模擬成果 4.1.5 均向應力條件模擬成果 4.1.6 非均向應力條件模擬結果 4.2 物理模型試驗 4.2.1 無軸向加壓 4.2.2 軸向加壓 第五章 結論與建議 5.1 數值模擬 5.2 物理模型試驗 參考文獻 附錄 口試紀錄表既回覆表 | |
| dc.language.iso | zh-TW | |
| dc.title | 三維水力破裂試驗顆粒流模擬技術開發 | zh_TW |
| dc.title | Three-Dimensional Hydraulic Fracture Test Simulation using Particle Flow Code | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 鄭富書(Fu-Shu Jeng) | |
| dc.contributor.oralexamcommittee | 翁孟嘉(Hsin-Tsai Liu),吳建宏(Chih-Yang Tseng),葉恩肇 | |
| dc.subject.keyword | 水力破裂試驗,實驗室內水力破裂試驗,顆粒流軟體,數值模擬,現地應力,裂縫生衍, | zh_TW |
| dc.subject.keyword | Hydraulic fracture test,Hydraulic fracture test in laboratory,Particle Flow Code,Numerical simulation,In-situ stress,fracture generation, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202103494 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0110202113403800.pdf | 5.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
