請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79509完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴璽恆(Albert Dai) | |
| dc.contributor.author | Yu-Lin Huang | en |
| dc.contributor.author | 黃友麟 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:02:15Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-23T09:02:15Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-08 | |
| dc.identifier.citation | Adduce, C., Sciortino, G., and Proietti, S. (2012). Gravity currents produced by lock-exchanges: experiments and simulations with a two layer shallow-water model with entrainment. J. Hydraul. Eng., 138(2):111–121. Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press. Beghin, P., Hopfinger, E. J., and Britter, R. E. (1981). Gravitational convection from instantaneous sources on inclined boundaries. J. Fluid Mech., 107:407–422. Cantero, M., Balachandar, S., and Garcia, M. (2007a). Highresolution simulations of cylindrical density currents. J. Fluid Mech., 590:437–469. Cantero, M., Lee, J., Balachandar, S., and Garcia, M. (2007b). On the front velocity of gravity currents. J. Fluid Mech., 586:1–39. Cantero, M. I., Balachandar, S., Garcia, M. H., and Bock, D. (2008). Turbulent structures in planar gravity currents and their influence on the flow dynamics. J. Geophys. Res., 113:C08018. Dai, A. (2013). Experiments on gravity currents propagating on different bottom slopes. J. Fluid Mech., 731:117–141. Dai, A. (2014). Non-Boussinesq gravity currents propagating on different bottom slopes. J. Fluid Mech., 741:658–680. Dai, A. (2015). High-resolution simulations of downslope gravity currents in the acceleration phase. Phys. Fluids, 27:076602. Dai, A. and Huang, Y.-L. (2016). High-resolution simulations of non-Boussinesq downslope gravity currents in the acceleration phase. Phys. Fluids, 28:026602.68 Dai, A. and Huang, Y.-L. (2020). Experiments on gravity currents propagating on unbounded uniform slopes. Environmental Fluid Mechanics, 20(6):1637–1662. Dai, A. and Huang, Y.-L. (2021). Boussinesq and non-boussinesq gravity currents propagating on unbounded uniform slopes in the deceleration phase. Journal of Fluid Mechanics, 917. Dai, A. and Wu, C.-S. (2016). High-resolution simulations of cylindrical gravity currents in a rotating system. J. Fluid Mech., 806:71–101. Daly, B. J. and Pracht, W. E. (1968). Numerical study of densitycurrent surges. Phys. Fluids, 11:15–30. Ellison, T. H. and Turner, J. S. (1959). Turbulent entrainment in stratified flows. J. Fluid Mech., 6:423–448. Hartel, C., Meiburg, E., and Necker, F. (2000). Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech., 418:189–212. Hoult, D. P. (1972). Oil spreading on the sea. Annu. Rev. Fluid Mech., 4:341–368. Huppert, H. E. and Simpson, J. (1980). The slumping of gravity currents. J. Fluid Mech., 99:785–799. Jones, C. S., Cenedese, C., Chassignet, E. P., Linden, P. F., and Sutherland, B. R. (2014). Gravity current propagation up a valley. J. Fluid Mech., 762:417–434. Korotkin, A. I. (2008). Added Masses of Ship Structures. Springer, 1st edition. La Rocca, M., Adduce, C., Lombardi, V., Sciortino, G., and Hinkermann, R. (2012a). Developement of a lattice Boltzmann method for two-layered shallow-water flow. Int. J. Numer. Methods Fluids, 70(8):1048–1072. La Rocca, M., Adduce, C., Sciortino, G., Bateman, P. A., and Boniforti, M. A. (2012b). A two-layer shallow water model for 3D gravity currents. J. Hydraul. Res., 50(2):208–217. La Rocca, M., Adduce, C., Sciortino, G., and Pinzon, A. B. (2008). Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom. Phys. Fluids, 20(10):106603. Lombardi, V., Adduce, C., Sciortino, G., and La Rocca, M. (2015). Gravity currents flowing upslope: laboratory experiments and shallow-water simulations. Phys. Fluids, 27:016602. Marleau, L. J., Flynn, M. R., and Sutherland, B. R. (2014). Gravity currents propagating up a slope. Phys. Fluids, 26:046605. Maxworthy, T. (2010). Experiments on gravity currents propagating down slopes. Part 2. The evolution of a fixed volume of fluid released from closed locks into a long, open channel. J. Fluid Mech., 647:27–51. Maxworthy, T. and Nokes, R. I. (2007). Experiments on gravity currents propagating down slopes. Part 1. The release of a fixed volume of heavy fluid from an enclosed lock into an open channel. J. Fluid Mech., 584:433–453. Ottolenghi, L., Adduce, C., Inghilesi, R., Armenio, V., and Roman, F. (2016a). Entrainment and mixing in unsteady gravity currents. J. Hydraul. Res., 54(5):541–557. Ottolenghi, L., Adduce, C., Inghilesi, R., Roman, F., and Armenio, V. (2016b). Mixing in lock-release gravity currents propagating up a slope. Phys. Fluids, 28:056604. Rastello, M. and Hopfinger, E. J. (2004). Sediment-entraining suspension clouds: a model of powder-snow avalanches. J. Fluid Mech., 509:181–206. Ross, A. N., Linden, P. F., and Dalziel, S. B. (2002). A study of three-dimensional gravity currents on a uniform slope. J. Fluid Mech., 453:239–261. Shin, J., Dalziel, S., and Linden, P. F. (2004). Gravity currents produced by lock exchange. J. Fluid Mech., 521:1–34. Simpson, J. (1997). Gravity Currents. Cambridge University Press, second edition. Simpson, J. E. (1972). Effects of the lower boundary on the head of a gravity current. J. Fluid Mech., 53:759–768. Tickle, G. (1996). A model of the motion and dilution of a heavy gas cloud released on a uniform slope in calm conditions. J. Haz. Mat., 49:29–47. Ungarish, M. (2009). An Introduction to Gravity Currents and Intrusions. Chapman Hall/CRC Press. Webber, D., Jones, S., and Martin, D. (1993). A model of the motion of a heavy gas cloud released on a uniform slope. J. Haz. Mat., 33:101–122. Zgheib, N., Ooi, A., and Balachandar, S. (2016). Front dynamics and entrainment of finite circular gravity currents on an unbounded uniform slope. J. Fluid Mech., 801:322–352. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79509 | - |
| dc.description.abstract | 本研究利用理論模型、因次分析以及水槽實驗,觀察異重流於不同平面斜坡運動。水槽斜坡及異重流密度差異是影響異重流運動的主要關鍵,因此研究主要探討坡度及密度對於異重流的影響。其中實驗坡度介於0◦ ≤ θ ≤ 12◦,相對密度差ϵ = (ρ1 − ρ0)/ρ0 介於0.02 ≤ ϵ ≤ 0.15 ,當中ρ1 為重流體密度,ρ0 為環境流體密度。透過理論模型及實驗結果,可進一步的求得不同坡度及相對密度差的異重流增捲係數α (entrainment coefficient )。其中發現增捲係數會隨著相對密度變大而變小,原因是當相對密度差變大的時候,重流體比較不容易與環境流體混合。此外,由結果發現此理論模型在小角度案例中並不適用。由因次分析以及實驗結果可發現,異重流在減速運動中會有兩種不同的運動型態,分別是重力與慣性力平衡的慣性段,以及重力與黏滯力平衡的黏滯段。受斜坡的影響,異重流運動形貌上有明顯的差異性,這樣的差異可進一步將異重流分為高角度(12◦、9◦、6◦) 與低角度(3◦、0◦)兩類。由於形貌上的差異,會影響異重流在後減速黏滯段的運動中,邊界層間黏滯力的作用面積不同而有不同的因次關係。受密度差異影響,異重流也可分為高相對密度差(ϵ = 0.15、0.10、0.05) 及低相對密度差(ϵ = 0.02) 兩類。在後減速黏滯段,因為前面運動強烈的混合下,發現高密度差的異重流在黏滯段與低密度差異重流運動型態相似。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:02:15Z (GMT). No. of bitstreams: 1 U0001-0110202113492200.pdf: 16850918 bytes, checksum: 63fe7c6543388c0b4cfa8bbc6a6f90fc (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 研究內容. . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章理論模型及因次分析. . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 低相對密度差理論模型(Boussinesq case) . . . . . . . . 6 2.2 高相對密度差理論模型(non-Boussinesq case) . . . . . . 10 2.3 因次分析. . . . . . . . . . . . . . . . . . . . . . . . . . 12 第三章實驗設備及實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . . 14 第四章影像處理及數據分析. . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 影像處理. . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 數據分析. . . . . . . . . . . . . . . . . . . . . . . . . . 19 第五章低相對密度差異重流. . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 低密度差角度12◦ 之平面運動. . . . . . . . . . . . . . 22 5.1.1 定性分析. . . . . . . . . . . . . . . . . . . . . . 22 5.1.2 定量分析. . . . . . . . . . . . . . . . . . . . . . 23 5.2 低相對密度差於角度9◦ 及6◦ 運動. . . . . . . . . . . 27 5.3 低相對密度差於角度3◦ 之平面運動. . . . . . . . . . . 29 5.3.1 定性分析. . . . . . . . . . . . . . . . . . . . . . 29 5.3.2 定量分析. . . . . . . . . . . . . . . . . . . . . . 29 5.4 低相對密度差於角度0◦ 之平面運動. . . . . . . . . . . 31 第六章高相對密度差異重流. . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1 高相對密度差於角度12◦ 之平面運動. . . . . . . . . . 41 6.1.1 定性分析. . . . . . . . . . . . . . . . . . . . . . 41 6.1.2 定量分析. . . . . . . . . . . . . . . . . . . . . . 43 6.2 高相對密度差於角度9◦ 及6◦ 運動. . . . . . . . . . . 44 6.3 高相對密度差於角度3◦ 運動. . . . . . . . . . . . . . . 46 6.3.1 定性分析. . . . . . . . . . . . . . . . . . . . . . 46 6.3.2 定量分析. . . . . . . . . . . . . . . . . . . . . . 47 6.4 高相對密度差角度水平方向0◦ 運動. . . . . . . . . . . 49 第七章綜合比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 第八章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 符號對照表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 | |
| dc.language.iso | zh-TW | |
| dc.title | 三維異重流於寬廣無渠道斜坡運動 | zh_TW |
| dc.title | Three dimensional gravity currents propagating on different unbounded slopes | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 丁肇隆(Hsin-Tsai Liu),蔡武廷(Chih-Yang Tseng),羅弘岳,蔡東霖,賴悅仁,李政賢 | |
| dc.subject.keyword | 異重流,密度流,斜坡,相對密度差, | zh_TW |
| dc.subject.keyword | gravity currents,density currents,unbounded slopes,density difference, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202103495 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0110202113492200.pdf | 16.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
