Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79486
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡皇龍(Huang-Lung Tsai)
dc.contributor.authorChia-Yu Jenen
dc.contributor.author任家佑zh_TW
dc.date.accessioned2022-11-23T09:01:41Z-
dc.date.available2022-10-06
dc.date.available2022-11-23T09:01:41Z-
dc.date.copyright2021-10-15
dc.date.issued2021
dc.date.submitted2021-10-13
dc.identifier.citationAliferis, K.A., Faubert, D., and Jabaji, S. (2014). A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS One 9, e111930. Balint-Kurti, P. (2019). The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol 20, 1163-1178. Baxter, A., Mittler, R., and Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany 65, 1229-1240. Bethke, P.C., Badger, M.R., and Jones, R.L. (2004). Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16, 332-341. Bigeard, J., Colcombet, J., and Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8, 521-539. Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406. Boyes, D.C., Nam, J., and Dangl, J.L. (1998). The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proceedings of the National Academy of Sciences of the United States of America 95, 15849-15854. Brauc, S., De Vooght, E., Claeys, M., Hofte, M., and Angenon, G. (2011). Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana. J Plant Physiol 168, 1813-1819. Camanes, G., Pastor, V., Cerezo, M., Garcia-Andrade, J., Vicedo, B., Garcia-Agustin, P., and Flors, V. (2012). A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses. Plant Physiol 158, 1054-1066. Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, A., Galvan, A., and Fernandez, E. (2017). Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis. Trends Plant Sci 22, 163-174. Chen, J., Liu, X., Liu, S., Fan, X., Zhao, L., Song, M., Fan, X., and Xu, G. (2020). Co-overexpression of OsNAR2. 1 and OsNRT2. 3a increased agronomic nitrogen use efficiency in transgenic rice plants. Frontiers in Plant Science 11, 1245. Chiba, Y., Shimizu, T., Miyakawa, S., Kanno, Y., Koshiba, T., Kamiya, Y., and Seo, M. (2015). Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J Plant Res 128, 679-686. Chopin, F., Orsel, M., Dorbe, M.F., Chardon, F., Truong, H.N., Miller, A.J., Krapp, A., and Daniel-Vedele, F. (2007). The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19, 1590-1602. DebRoy, S., Thilmony, R., Kwack, Y.B., Nomura, K., and He, S.Y. (2004). A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci U S A 101, 9927-9932. DeYoung, B.J., and Innes, R.W. (2006). Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7, 1243-1249. Fan, X., Naz, M., Fan, X., Xuan, W., Miller, A.J., and Xu, G. (2017). Plant nitrate transporters: from gene function to application. J Exp Bot 68, 2463-2475. Fatima, U., and Senthil-Kumar, M. (2015). Plant and pathogen nutrient acquisition strategies. Front Plant Sci 6, 750. Feil, H., Feil, W.S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., Lykidis, A., Trong, S., Nolan, M., Goltsman, E., Thiel, J., Malfatti, S., Loper, J.E., Lapidus, A., Detter, J.C., Land, M., Richardson, P.M., Kyrpides, N.C., Ivanova, N., and Lindow, S.E. (2005). Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102, 11064-11069. Forde, B.G. (2000). Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465, 219-235. Gao, Q.M., Zhu, S., Kachroo, P., and Kachroo, A. (2015). Signal regulators of systemic acquired resistance. Front Plant Sci 6, 228. Geng, X.Q., Jin, L., Shimada, M., Kim, M.G., and Mackey, D. (2014). The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta 240, 1149-1165. Gentzel, I., Giese, L., Zhao, W., Alonso, A.P., and Mackey, D. (2019). A Simple Method for Measuring Apoplast Hydration and Collecting Apoplast Contents. Plant Physiol 179, 1265-1272. Granstedt, R.C., and Huffaker, R.C. (1982). Identification of the Leaf Vacuole as a Major Nitrate Storage Pool. Plant Physiology 70, 410-413. Hachiya, T., and Sakakibara, H. (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany 68, 2501-2512. Hedrich, R., and Geiger, D. (2017). Biology of SLAC 1‐type anion channels–from nutrient uptake to stomatal closure. New Phytologist 216, 46-61. Heuberger, A.L., Robison, F.M., Lyons, S.M.A., Broeckling, C.D., and Prenni, J.E. (2014). Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Frontiers in Plant Science 5, 291. Hu, B., Wang, W., Ou, S.J., Tang, J.Y., Li, H., Che, R.H., Zhang, Z.H., Chai, X.Y., Wang, H.R., Wang, Y.Q., Liang, C.Z., Liu, L.C., Piao, Z.Z., Deng, Q.Y., Deng, K., Xu, C., Liang, Y., Zhang, L.H., Li, L.G., and Chu, C.C. (2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47, 834-+. Hu, Y.B., Fernandez, V., and Ma, L. (2014). Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide. Frontiers in Plant Science 5, 360. Huang, H., Ullah, F., Zhou, D.X., Yi, M., and Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front Plant Sci 10, 800. Huang, S., Zhang, X., and Fernando, W.D. (2020). Directing Trophic Divergence in Plant-Pathogen Interactions: Antagonistic Phytohormones With NO Doubt? Frontiers in Plant Science 11. Hurley, B., Subramaniam, R., Guttman, D.S., and Desveaux, D. (2014). Proteomics of effector-triggered immunity (ETI) in plants. Virulence 5, 752-760. Jin, L., and Mackey, D.M. (2017). Measuring callose deposition, an indicator of cell wall reinforcement, during bacterial infection in Arabidopsis. In Plant Pattern Recognition Receptors (Springer), pp. 195-205. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329. Kanno, Y., Hanada, A., Chiba, Y., Ichikawa, T., Nakazawa, M., Matsui, M., Koshiba, T., Kamiya, Y., and Seo, M. (2012). Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proceedings of the National Academy of Sciences of the United States of America 109, 9653-9658. Katagiri, F., Thilmony, R., and He, S.Y. (2002). The Arabidopsis thaliana-pseudomonas syringae interaction. Arabidopsis Book 1, e0039. Kechid, M., Desbrosses, G., Rokhsi, W., Varoquaux, F., Djekoun, A., and Touraine, B. (2013). The NRT 2.5 and NRT 2.6 genes are involved in growth promotion of Arabidopsis by the plant growth‐promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM 196. New Phytologist 198, 514-524. Kennelly, M.M., Cazorla, F.M., de Vicente, A., Ramos, C., and Sundin, G.W. (2007). Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control. Plant Dis 91, 4-17. Kiba, T., Feria-Bourrellier, A.B., Lafouge, F., Lezhneva, L., Boutet-Mercey, S., Orsel, M., Brehaut, V., Miller, A., Daniel-Vedele, F., Sakakibara, H., and Krapp, A. (2012). The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24, 245-258. Klessig, D.F., Choi, H.W., and Dempsey, D.A. (2018). Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Mol Plant Microbe Interact 31, 871-888. Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H. (2000). Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 97, 8849-8855. Kraepiel, Y., and Barny, M.A. (2016). Gram‐negative phytopathogenic bacteria, all hemibiotrophs after all? Molecular plant pathology 17, 313. Kurusu, T., Mitsuka, D., Yagi, C., Kitahata, N., Tsutsui, T., Ueda, T., Yamamoto, Y., Negi, J., Iba, K., Betsuyaku, S., and Kuchitsu, K. (2018). Involvement of S-type anion channels in disease resistance against an oomycete pathogen in Arabidopsis seedlings. Commun Integr Biol 11, 1-6. Leran, S., Varala, K., Boyer, J.C., Chiurazzi, M., Crawford, N., Daniel-Vedele, F., David, L., Dickstein, R., Fernandez, E., Forde, B., Gassmann, W., Geiger, D., Gojon, A., Gong, J.M., Halkier, B.A., Harris, J.M., Hedrich, R., Limami, A.M., Rentsch, D., Seo, M., Tsay, Y.F., Zhang, M.Y., Coruzzi, G., and Lacombe, B. (2014). A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science 19, 5-9. Lezhneva, L., Kiba, T., Feria‐Bourrellier, A.B., Lafouge, F., Boutet‐Mercey, S., Zoufan, P., Sakakibara, H., Daniel‐Vedele, F., and Krapp, A. (2014). The Arabidopsis nitrate transporter NRT 2.5 plays a role in nitrate acquisition and remobilization in nitrogen‐starved plants. The Plant Journal 80, 230-241. Lievens, L., Pollier, J., Goossens, A., Beyaert, R., and Staal, J. (2017). Abscisic acid as pathogen effector and immune regulator. Frontiers in plant science 8, 587. Lindow, S.E., Arny, D.C., and Upper, C.D. (1982). Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol 70, 1084-1089. Liu, C., Atanasov, K.E., Tiburcio, A.F., and Alcazar, R. (2019). The Polyamine Putrescine Contributes to H2O2 and RbohD/F-Dependent Positive Feedback Loop in Arabidopsis PAMP-Triggered Immunity. Front Plant Sci 10, 894. Liu, K.-H., Huang, C.-Y., and Tsay, Y.-F. (1999a). CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. The Plant Cell 11, 865-874. Liu, K.H., and Tsay, Y.F. (2003). Switching between the two action modes of the dual‐affinity nitrate transporter CHL1 by phosphorylation. The EMBO journal 22, 1005-1013. Liu, K.H., Huang, C.Y., and Tsay, Y.F. (1999b). CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11, 865-874. Longo, A., Miles, N.W., and Dickstein, R. (2018). Genome Mining of Plant NPFs Reveals Varying Conservation of Signature Motifs Associated With the Mechanism of Transport. Front Plant Sci 9, 1668. Mateo, A., Muhlenbock, P., Rusterucci, C., Chang, C.C.C., Miszalski, Z., Karpinska, B., Parker, J.E., Mullineaux, P.M., and Karpinski, S. (2004). Lesion simulating disease 1 - Is required for acclimation to conditions that promote excess excitation energy. Plant Physiology 136, 2818-2830. Miller, R.N., Costa Alves, G.S., and Van Sluys, M.A. (2017). Plant immunity: unravelling the complexity of plant responses to biotic stresses. Ann Bot 119, 681-687. Modolo, L.V., Augusto, O., Almeida, I.M.G., Magalhaes, J.R., and Salgado, I. (2005). Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. Febs Letters 579, 3814-3820. Morere-Le Paven, M.C., Viau, L., Hamon, A., Vandecasteele, C., Pellizzaro, A., Bourdin, C., Laffont, C., Lapied, B., Lepetit, M., Frugier, F., Legros, C., and Limami, A.M. (2011). Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. J Exp Bot 62, 5595-5605. Mur, L.A.J., Simpson, C., Kumari, A., Gupta, A.K., and Gupta, K.J. (2017). Moving nitrogen to the centre of plant defence against pathogens. Ann Bot 119, 703-709. Naveed, Z.A., Wei, X., Chen, J., Mubeen, H., and Ali, G.S. (2020). The PTI to ETI Continuum in Phytophthora-Plant Interactions. Front Plant Sci 11, 593905. Nelson, E.B. (2018). The seed microbiome: Origins, interactions, and impacts. Plant and Soil 422, 7-34. Noguero, M., and Lacombe, B. (2016). Transporters involved in root nitrate uptake and sensing by Arabidopsis. Frontiers in Plant Science 7, 1391. O'Leary, B.M., Neale, H.C., Geilfus, C.M., Jackson, R.W., Arnold, D.L., and Preston, G.M. (2016). Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. Plant Cell and Environment 39, 2172-2184. Orsel, M., Krapp, A., and Daniel-Vedele, F. (2002). Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol 129, 886-896. Parangan-Smith, A., and Lindow, S. (2013). Contribution of nitrate assimilation to the fitness of Pseudomonas syringae pv. syringae B728a on plants. Appl Environ Microbiol 79, 678-687. Paulsen, I.T., and Skurray, R.A. (1994). The POT family of transport proteins. Trends Biochem Sci 19, 404. Pike, S., Gao, F., Kim, M.J., Kim, S.H., Schachtman, D.P., and Gassmann, W. (2014). Members of the NPF3 transporter subfamily encode pathogen-inducible nitrate/nitrite transporters in grapevine and Arabidopsis. Plant Cell Physiol 55, 162-170. Potel, F., Valadier, M.H., Ferrario‐Méry, S., Grandjean, O., Morin, H., Gaufichon, L., Boutet‐Mercey, S., Lothier, J., Rothstein, S.J., and Hirose, N. (2009). Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana–roles of glutamate synthases and carbamoylphosphate synthetase in leaves. The FEBS journal 276, 4061-4076. Prochazkova, D., Haisel, D., and Pavlikova, D. (2014). Nitric oxide biosynthesis in plants - the short overview. Plant Soil and Environment 60, 129-134. Remans, T., Nacry, P., Pervent, M., Girin, T., Tillard, P., Lepetit, M., and Gojon, A. (2006). A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140, 909-921. Scalschi, L., Llorens, E., Gonzalez-Hernandez, A.I., Valcarcel, M., Gamir, J., Garcia-Agustin, P., Vicedo, B., and Camanes, G. (2018). 1-Methyltryptophan Modifies Apoplast Content in Tomato Plants Improving Resistance Against Pseudomonas syringae. Front Microbiol 9, 2056. Schwachtje, J., Fischer, A., Erban, A., and Kopka, J. (2018). Primed primary metabolism in systemic leaves: a functional systems analysis. Sci Rep 8, 216. Seifi, H.S., and Shelp, B.J. (2019). Spermine Differentially Refines Plant Defense Responses Against Biotic and Abiotic Stresses. Front Plant Sci 10, 117. Seifi, H.S., De Vleesschauwer, D., Aziz, A., and Höfte, M. (2014). Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. Plant Signaling Behavior 9, e27995. Shi, H.T., Li, R.J., Cai, W., Liu, W., Fu, Z.W., and Lu, Y.T. (2012). In vivo role of nitric oxide in plant response to abiotic and biotic stress. Plant Signal Behav 7, 437-439. Spoel, S.H., and Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature reviews immunology 12, 89-100. Steiner, H.Y., Naider, F., and Becker, J.M. (1995). The PTR family: a new group of peptide transporters. Mol Microbiol 16, 825-834. Sun, Y., Wang, M., Mur, L.A.J., Shen, Q., and Guo, S. (2020). Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 21, 572. Tavernier, V., Cadiou, S., Pageau, K., Lauge, R., Reisdorf-Cren, M., Langin, T., and Masclaux-Daubresse, C. (2007). The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity. J Exp Bot 58, 3351-3360. Tejada-Jimenez, M., Llamas, A., Galvan, A., and Fernandez, E. (2019). Role of Nitrate Reductase in NO Production in Photosynthetic Eukaryotes. Plants-Basel 8, 56. Thomma, B.P., Nurnberger, T., and Joosten, M.H. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23, 4-15. Tong, W.R.N., Imai, A., Tabata, R., Shigenobu, S., Yamaguchi, K., Yamada, M., Hasebe, M., Sawa, S., Motose, H., and Takahashi, T. (2016). Polyamine Resistance Is Increased by Mutations in a Nitrate Transporter Gene NRT1.3 (AtNPF6.4) in Arabidopsis thaliana. Frontiers in Plant Science 7, 834. Toum, L., Torres, P.S., Gallego, S.M., Benavides, M.P., Vojnov, A.A., and Gudesblat, G.E. (2016). Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production. Frontiers in Plant Science 7, 1851. Tsai, B.-S. (2020). The role of NPF6.4 in response to Pseudomonas syringae in Arabidopsis thaliana. In Institute of Plant Biology (Taipei, Taiwan: National Taiwan University). Tukey Jr, H. (1966). Leaching of metabolites from above-ground plant parts and its implications. Bulletin of the Torrey Botanical Club, 385-401. Tun, N.N., Santa-Catarina, C., Begum, T., Silveira, V., Handro, W., Floh, E.I.S., and Scherer, G.F.E. (2006). Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant and Cell Physiology 47, 346-354. Van Hall, C.J.J. (1902). Bijdragen tot de kennis der Bakterieele Plantenziekten. (Companyöperatieve drukkerij-vereeniging' Plantijn,'). van Wersch, S., Tian, L., Hoy, R., and Li, X. (2020). Plant NLRs: The Whistleblowers of Plant Immunity. Plant Commun 1, 100016. Vitor, S.C., Duarte, G.T., Saviani, E.E., Vincentz, M.G.A., Oliveira, H.C., and Salgado, I. (2013). Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae. Planta 238, 475-486. Vlot, A.C., Sales, J.H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., and Nayem, S. (2021). Systemic propagation of immunity in plants. New Phytol 229, 1234-1250. Wang, Y.Y., Cheng, Y.H., Chen, K.E., and Tsay, Y.F. (2018). Nitrate Transport, Signaling, and Use Efficiency. Annual Review of Plant Biology, Vol 69 69, 85-122. Ward, J.L., Forcat, S., Beckmann, M., Bennett, M., Miller, S.J., Baker, J.M., Hawkins, N.D., Vermeer, C.P., Lu, C., Lin, W., Truman, W.M., Beale, M.H., Draper, J., Mansfield, J.W., and Grant, M. (2010). The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant J 63, 443-457. Webb, M. (1949). The Influence of Magnesium on Cell Division .2. The Effect of Magnesium on the Growth and Cell Division of Various Bacterial Species in Complex Media. Journal of General Microbiology 3, 410-417. Wei, H.L., and Collmer, A. (2018). Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors. Mol Plant Pathol 19, 1779-1794. Wei, J., Zheng, Y., Feng, H., Qu, H., Fan, X., Yamaji, N., Ma, J.F., and Xu, G. (2018). OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. J Exp Bot 69, 1095-1107. Wendehenne, D., Gao, Q.M., Kachroo, A., and Kachroo, P. (2014). Free radical-mediated systemic immunity in plants. Curr Opin Plant Biol 20, 127-134. Wenig, M., Ghirardo, A., Sales, J.H., Pabst, E.S., Breitenbach, H.H., Antritter, F., Weber, B., Lange, B., Lenk, M., Cameron, R.K., Schnitzler, J.P., and Vlot, A.C. (2019). Systemic acquired resistance networks amplify airborne defense cues. Nat Commun 10, 3813. Wilkinson, J.Q., and Crawford, N.M. (1993). Identification and Characterization of a Chlorate-Resistant Mutant of Arabidopsis-Thaliana with Mutations in Both Nitrate Reductase Structural Genes Nia1 and Nia2. Molecular General Genetics 239, 289-297. Xin, X.F., Kvitko, B., and He, S.Y. (2018). Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology 16, 316-328. Yamada, K., Saijo, Y., Nakagami, H., and Takano, Y. (2016). Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354, 1427-1430. Young, J.M. (1991). Pathogenicity and Identification of the Lilac Pathogen, Pseudomonas-Syringae Pv Syringae Van Hall 1902. Annals of Applied Biology 118, 283-298. Yu, X., Lund, S.P., Scott, R.A., Greenwald, J.W., Records, A.H., Nettleton, D., Lindow, S.E., Gross, D.C., and Beattie, G.A. (2013). Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci U S A 110, E425-434. Zeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell and Environment 36, 2085-2103. Zhang, Z., Liu, Y., Huang, H., Gao, M., Wu, D., Kong, Q., and Zhang, Y. (2017). The NLR protein SUMM 2 senses the disruption of an immune signaling MAP kinase cascade via CRCK 3. EMBO reports 18, 292-302. Zurbriggen, M.D., Carrillo, N., and Hajirezaei, M.-R. (2010). ROS signaling in the hypersensitive response: when, where and what for? Plant signaling behavior 5, 393-396.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79486-
dc.description.abstract"我們研究室先前的研究發現屬於硝酸鹽/短胜肽轉運蛋白家族(Nitrate transporter 1/Peptide transporters family, NPF)的轉運蛋白NPF6.4參與植物遭受丁香假單孢菌(Pseudomonas syringae)亞種DC3000感染時的PTI (PAMP Triggered Immunity);然而關於如何參與的詳細機轉目前研究尚淺。本研究探討NPF6.4在PTI中的角色,首先測定NPF6.4的受質。在以非洲爪蟾(Xenopus laevis)的卵母細胞作為轉運蛋白表現平台的測試實驗中,我們確立硝酸鹽為NPF6.4的受質。而後進一步以模式植物阿拉伯芥(Arabidopsis thaliana)的葉部做為測試對象,測量野生種(Columbia-0, Col-0)、npf6.4突變株與fls2突變株在受到細菌感染時的硝酸鹽濃度變化。由目前實驗的結果得知相較於Col-0野生種以及fls2突變株,npf6.4突變株在受到感染時葉部的硝酸鹽濃度沒有明顯變化,因此推測儘管NPF6.4的確作為硝酸鹽轉運蛋白,NPF6.4可能不會影響阿拉伯芥在遭遇丁香假單孢菌DC3000時,葉部的硝酸鹽濃度變化。對於硝酸鹽轉運蛋白NPF6.4在PTI中的角色,還需要進一步的研究。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:01:41Z (GMT). No. of bitstreams: 1
U0001-0610202116210400.pdf: 4520009 bytes, checksum: cfa44aa958a85de5dc75717df06ae83b (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"Content 口試委員會審定書 ii 誌謝 iii List of Abbreviation iv 摘要 vi Abstract vii Introduction 1 1. Nitrate Transporters in Arabidopsis 1 1.1 Nitrate transporter 1/Peptide transporters family (NPF) 1 1.2 Nitrate transporter 2 (NRT2) 2 1.3 NRTs and nitrate uptake in response to biotic stress 3 2. Plant Immune Responses to Pathogens 4 2.1 PAMP-triggered immunity (PTI) 4 2.2 Effector-triggered susceptibility (ETS) 5 2.3 Effector-triggered immunity (ETI) 5 2.4 Hypersensitive response (HR) and systemic acquired resistance (SAR) 6 3. Nitrogen (N) in Responses to Pathogen Infection in Arabidopsis 7 4. Bacterial Pathogen Model System: Pseudomonas syringae 7 4.1 P. syringae as a Hemibiotrophic Pathogen 8 4.2 P. syringae as an Epiphytic and Endophytic Pathogen 8 5. Current knowledge of AtNPF6.4 9 Aims of the study 10 Materials and Methods 11 Plant materials and growth conditions 11 Bacterial strains and growth conditions 11 Cloning and Constructs 12 P. syringae Inoculation 12 Oocyte Functional Assay 14 Western Blotting 16 Nitrate Content Analysis of Plant Tissues 18 Apoplastic Fluid Extraction 18 HPLC Analysis 19 Results 21 I. AtNPF6.4 is a dual-affinity nitrate transporter 21 II. The shoot nitrate distribution patterns of Col-0, sper3-3, npf6.4, and fls2 are similar under the long-day condition 21 III. No significant change in leaf nitrate content was observed upon Pst DC3000 infection by dipping 22 IV. No significant change in leaf nitrate content was observed upon Pst DC3000 infection by infiltration 22 V. The apoplastic nitrate contents are also unchanged in both npf6.4 mutants 23 VI. Susceptibility of plants inoculated with Pst DC3000 by infiltration 24 Discussion 25 The Dual-affinity of Nitrate Transport of AtNPF6.4 25 Nitrate contents 26 Current Knowledge of Nitrate in Plant-pathogen Interaction 28 Effects of different nitrogen forms. 28 Nitrate assimilation in P. syringae. 28 Nitrate to nitric oxide in plant defense of A. thaliana. 29 The missing pieces of plant-pathogen interaction. 29 The Temporal Changes of Nitrate Content 30 Consistency of Foliar Nitrate Content in sper3-3 and npf6.4 mutants 31 References 32   List of Figures Figures 45 Figure 1. NPF6.4 shows both high-affinity and low-affinity nitrate uptake activity. 45 Figure 2. Nitrate distribution patterns in shoots under LD condition. 46 Figure 3. The nitrate content of dip-infected rosettes at short-day (SD) condition. 48 Figure 4. Nitrate content in pre-infiltrated mature leaves under short day condition. 49 Figure 5. Foliar nitrate content in infiltrated leaves at 24 and 36 hpi. 51 Figure 6. Nitrate between infiltrated and un-infiltrated leaves at 24 hpi. 52 Figure 7. Nitrate between infiltrated and un-infiltrated leaves at 36 hpi. 53 Figure 8. Nitrate in the apoplast before syringe infiltration (0 hpi). 54 Figure 9. Nitrate in the infiltrated apoplast. 56 Figure 10. Bacterial content of Pst DC3000-infiltrated apoplast at 3 dpi. 57 Figure 11. Batch-comparison of Pst-induced foliar nitrate alteration at 36 hpi 58 Figure 12. Temporal changes of foliar nitrate content upon Pst DC3000 infiltration. 59 Figure 13. Temporal changes of nitrate content in the apoplast. 60 Figure 14. Estimating nitrate ratio between apoplastic and foliar content. 61 Figure 15. Amino acid sequence alignment of dual-affinity nitrate transporters 63   List of Supplemental Figures Supplemental Figures 64 Supplemental Figure 1. Phosphorylated sites in AtNPF6.4 64 Supplemental Figure 2. The expression map of AtNPF6.4 in different tissues. 65 Supplemental Figure 3. Diurnal expression of AtNPF6.4 under short day condition. 66 Supplemental Figure 4. The expression of AtNPF6.4 upon Pst infection. 67 Supplemental Figure 5. Current knowledge of N metabolism during plant defense. 68   List of Appendices Appendix 69 Appendix A. Primers Constructs Table 1. Primers 69 Appendix A. Primers Constructs Table 2. Constructs Strains 70 Appendix B. Buffers Table 1. King’s B medium 71 Appendix B. Buffers Table 2. LB medium 72 Appendix B. Buffers Table 3. Ringer’s Buffer 73 Appendix B. Buffers Table 4. 10X ND96 Buffer without Ca2+ 74 Appendix B. Buffers Table 5. 10X ND96 + Ca2+ Buffer 75 Appendix B. Buffers Table 6. Nitrate Uptake Buffer – Low affinity 76 Appendix B. Buffers Table 7. Nitrate Uptake Buffer – High affinity 77 Appendix B. Buffers Table 8. Mobile Phase for HPLC 78 Appendix B. Buffers Table 9. Oocyte Protein Extraction Buffer 79 Appendix B. Buffers Table 10. 20X MOPS/SDS Running Buffer 80 Appendix B. Buffers Table 11. 20X NuPAGE Gel Transfer Buffer 81 Appendix B. Buffers Table 12. 10X Phosphate-Buffered Saline (PBS) buffer 82 Appendix C. Others Table 1. Program for capillary puller 83 "
dc.language.isoen
dc.titleAtNPF6.4運輸功能以及在阿拉伯芥受丁香假單孢菌感染時防禦反應之角色zh_TW
dc.titleAnalysis of AtNPF6.4 transport activity and its role in Arabidopsis response to Pseudomonas syringaeen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor王雅筠(Ya-Yun Wang)
dc.contributor.oralexamcommittee李金美(Hsin-Tsai Liu),蔡宜芳(Chih-Yang Tseng),鄭秋萍
dc.subject.keywordNPF6.4,丁香假單孢菌,硝酸鹽,zh_TW
dc.subject.keywordNPF6.4,P. syringae,nitrate,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202103588
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-0610202116210400.pdf4.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved