Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79472
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張寶棣(Pao-Ti Chang)
dc.contributor.authorHan-Sheng Wangen
dc.contributor.author王涵聖zh_TW
dc.date.accessioned2022-11-23T09:01:21Z-
dc.date.available2021-11-04
dc.date.available2022-11-23T09:01:21Z-
dc.date.copyright2021-11-04
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citation[1] MissMJ and Cush, Standard Model of Elementary Particles, https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg, 2021, [accessed 2021-09-12]. [2] K. Akai, K. Furukawa, and H. Koiso, SuperKEKB Collider, Nucl. Instrum. Meth. A 907, 188 (2018). [3] W. Altmannshofer et al., The Belle II Physics Book, PTEP 2019, 123C01 (2019),[Erratum: PTEP 2020, 029201 (2020)]. [4] T. Abe, Belle II Technical Design Report, KEK-REPORT-2010-1 (2010). [5] V. Bertacchi et al., Track finding at Belle II, Comput. Phys. Commun. 259, 107610 (2021). [6] J. P. Lees et al., Search for B → K(∗)νν and invisible quarkonium decays, Phys. Rev. D 87, 112005 (2013). [7] J. Grygier et al., Search for B→hνν decays with semileptonic tagging at Belle, Phys. Rev. D 96, 091101 (2017), [Addendum: Phys.Rev.D 97, 099902 (2018)]. [8] A. J. Buras, J. Girrbach-Noe, C. Niehoff, and D. M. Straub, B→K(∗)νν decays in the Standard Model and beyond, JHEP 02, 184 (2015). [9] P. A. Zyla et al., Review of Particle Physics, PTEP 2020, 083C01 (2020). [10] A. J. Bevan et al., The Physics of the B Factories, Eur. Phys. J. C 74, 3026 (2014). [11] J. F. Kamenik and C. Smith, FCNC portals to the dark sector, JHEP 03, 090 (2012). [12] T. Abe et al., Achievements of KEKB, PTEP 2013, 03A001 (2013). [13] Belle II Luminosity, https://confluence.desy.de/display/BI/Belle+II+Luminosity, [accessed 2021-10-06]. [14] M. Bona et al., SuperB: A High-Luminosity Asymmetric e+ e- Super Flavor Factory. Conceptual Design Report, SLAC-R-856, INFN-AE-07-02, LAL-07-15, INFN-AE-07-2 (2007). [15] R. de Sangro, SuperKEKB and Belle II Status Report, PoS FPCP2017, 037 (2017). [16] T. Kuhr, C. Pulvermacher, M. Ritter, T. Hauth, and N. Braun, The Belle II Core Software, Comput. Softw. Big Sci. 3, 1 (2019). [17] S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl.Instrum.Meth. A506, 250 (2003). [18] T. Keck et al., The Full Event Interpretation: An Exclusive Tagging Algorithm for the Belle II Experiment, Comput. Softw. Big Sci. 3, 6 (2019). [19] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462, 152 (2001). [20] N. Davidson, T. Przedzinski, and Z. Was, PHOTOS interface in C++: Technical and Physics Documentation, Comput. Phys. Commun. 199, 86 (2016). [21] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015). [22] Z. Gruberová et al., Photon Timing, https://indico.belle2.org/event/3644/contributions/18620, 2021, [restricted access; accessed 2021-10-07]. [23] W. Waltenberger, RAVE: A detector-independent toolkit to reconstruct vertices, IEEE Trans. Nucl. Sci. 58, 434 (2011). [24] T. Koga, A. Selce, and S. S., Optimization of π0 reconstruction selection and first systematic uncertainty evaluation of the efficiencies, Belle II internal note, BELLE2-NOTE-PH-2020-003, 2020. [25] G. Punzi, Sensitivity of searches for new signals and its optimization, eConf C030908, MODT002 (2003). [26] T. Keck, Machine learning algorithms for the Belle II experiment and their validation on Belle data, PhD thesis, KIT, Karlsruhe, 2017. [27] F. Chollet et al., Keras, https://keras.io, 2015. [28] F. Abudinén, Development of a B0 flavor tagger and performance study of a novel time-dependent CP analysis of the decay B0→π0π0 at Belle II, PhD thesis, Munich, Max Planck Inst., 2018. [29] J. F. Krohn et al., Global decay chain vertex fitting at Belle II, Nucl. Instrum. Meth. A 976, 164269 (2020). [30] W. Sutcliffe, Performance of Full Event Interpretation and a calibration with B→Xℓν decays in early phase III data, Belle II internal note, BELLE2-NOTE-PH-2019-031, 2019. [31] W. Verkerke and D. P. Kirkby, The RooFit toolkit for data modeling, eConf C0303241, MOLT007 (2003). [32] S. Sandilya and A. Schwartz, Study of Kaon and Pion Identification Performances in Phase III data with D*+ sample, Belle II internal note, BELLE2-NOTE-PH-2019-048, 2019. [33] L. Heinrich, M. Feickert, G. Stark, and K. Cranmer, pyhf: pure-Python implementation of HistFactory statistical models, J. Open Source Softw. 6, 2823 (2021). [34] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, HistFactory: A tool for creating statistical models for use with RooFit and RooStats, CERN-OPEN-2012-016 (2012). [35] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011), [Erratum: Eur.Phys.J.C 73, 2501 (2013)]. [36] S. S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, The Annals of Mathematical Statistics 9, 60 (1938). [37] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434, 435 (1999). [38] A. Glazov, P. Rados, A. Rostomyan, E. Paoloni, and L. Zani, Measurement of the tracking efficiency in Phase 3 data using tau-pair events., Belle II internal note, BELLE2-NOTE-PH-2020-006, 2020. [39] A. GAZ, Rediscovery of B+→ϕK(∗)+ and B0→ϕK(∗)0 using the Summer 2020 dataset, Belle II internal note, BELLE2-NOTE-PH-2020-019, 2020. [40] J. D. Bjorken and S. J. Brodsky, Statistical Model for Electron-Positron Annihilation Into Hadrons, Phys. Rev. D 1, 1416 (1970). [41] G. C. Fox and S. Wolfram, Observables for the Analysis of Event Shapes in e+e- Annihilation and Other Processes, Phys. Rev. Lett. 41, 1581 (1978). [42] D. M. Asner et al., Search for exclusive charmless hadronic B decays, Phys. Rev. D 53, 1039 (1996). [43] A. L. Maas et al., Rectifier nonlinearities improve neural network acoustic models, in Proc. icml, volume 30, page 3, Citeseer, 2013. [44] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, in Proceedings of the 32nd International Conference on Machine Learning, edited by F. Bach and D. Blei, volume 37 of Proceedings of Machine Learning Research, pages 448–456, Lille, France, 2015, PMLR. [45] S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry, How does batch normalization help optimization?, in Proceedings of the 32nd international conference on neural information processing systems, pages 2488–2498, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79472-
dc.description.abstract本篇論文假設標準模型對目標衰變的分支比預測正確,利用蒙地卡羅模擬探討了在 Belle II 實驗中尋找 B^+ → K^+νν 和 B^0 → K_S^0νν 衰變的可行性。為了辨別訊號事件,我們完整重建了 Υ(4S) → BB 事件中一顆衰變為強子的 B 介子,並限制除一 K 介子外,事件的剩餘部分中不得存在其他粒子。我們透過對抗式神經網路分類器來提升訊號背景比,並使用擬合方法來測量分支比。接著,我們利用艾西莫夫資料集和剖面概似比方法,以估算預期之訊號顯著性和分支比上限。 最後,本篇論文報告了在不同 Belle II 資料量下,所預期得到 90% 信心水準下之分支比上限與顯著性,以及在各 q^2 區間中, 90% 信心水準下之部分分支比上限。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:01:21Z (GMT). No. of bitstreams: 1
U0001-1010202113374800.pdf: 10299796 bytes, checksum: 436da2adffd49755f9c3188994777df9 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xv List of Tables xix 1 Introduction 1 1.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 B-Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Belle II Experiment 7 2.1 SuperKEKB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Belle II Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Vertex Detectors (VXD) . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Central Drift Chamber (CDC) . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Particle Identification Detectors (TOP ARICH) . . . . . . . . . 11 2.2.4 Electromagnetic Calorimeter (ECL) . . . . . . . . . . . . . . . . . 13 2.2.5 Klong and Muon Detector (KLM) . . . . . . . . . . . . . . . . . 14 2.3 Object Reconstruction in Belle II Software . . . . . . . . . . . . . . . . 14 2.3.1 Track reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 ECL cluster reconstruction . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Charged particle identification . . . . . . . . . . . . . . . . . . . . 16 3 Data Samples 17 3.1 Monte-Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 Signal samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 Background samples . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Real Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Analysis Strategy 21 4.1 Hadronic Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Reconstruction of ϒ(4S) Candidates . . . . . . . . . . . . . . . . . . . . 22 4.3 Neural Networking Training . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 q2 Estimation and Event Reweighting . . . . . . . . . . . . . . . . . . . 23 4.5 Measurement of Branching Fractions . . . . . . . . . . . . . . . . . . . 25 5 Event Selection 27 5.1 Particle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.1 Track and ECL cluster selection . . . . . . . . . . . . . . . . . . . 27 5.1.2 Particle candidate selection . . . . . . . . . . . . . . . . . . . . . 28 5.2 FEI Skim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.1 Tag-side selection . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.2 Extra-particle-related selection . . . . . . . . . . . . . . . . . . . 31 5.4 Continuum Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.5 Best Candidate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.6 Efficiency Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Neural Network Classifiers 37 6.1 Adversarial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2 Continuum Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.3 B¯B Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7 Control Channel Study 45 7.1 Reconstruction and FEI Skim . . . . . . . . . . . . . . . . . . . . . . . 45 7.2 Basic Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.2.1 Daughter Particle Selection . . . . . . . . . . . . . . . . . . . . . 46 7.2.2 Signal-side Selection . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2.3 Best Candidate Selection . . . . . . . . . . . . . . . . . . . . . . 48 7.3 Data-MC Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.3.1 Modifications of Variables . . . . . . . . . . . . . . . . . . . . . . 48 7.3.2 Histogram Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.4 Calibration of Event Selection Efficiency . . . . . . . . . . . . . . . . . 49 8 Signal Extraction 55 8.1 Event Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.1.1 Signal normalization . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.1.2 FEI skim efficiencies . . . . . . . . . . . . . . . . . . . . . . . . 56 8.1.3 K-ID efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8.1.4 Event selection efficiencies . . . . . . . . . . . . . . . . . . . . . 57 8.2 PDF modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.2.1 Determination of histogram-like PDFs . . . . . . . . . . . . . . . 58 8.2.2 Parameters of PDFs . . . . . . . . . . . . . . . . . . . . . . . . . 63 8.3 Calculation of Expected Significances . . . . . . . . . . . . . . . . . . . 64 8.4 Calculation of Expected Upper Limit . . . . . . . . . . . . . . . . . . . 65 9 Systematic Uncertainties 67 9.1 Tracking Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.2 K-ID Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.2.1 Uncertainties for total branching fraction measurement . . . . . . . 68 9.2.2 Uncertainties for partial branching fraction measurement . . . . . . 69 9.3 K_S0 Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . . . . . 69 9.4 FEI Skim Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 9.5 Event Selection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 70 9.6 Partial Branching Fractions . . . . . . . . . . . . . . . . . . . . . . . . . 72 9.7 Statistical Uncertainty of MC Samples . . . . . . . . . . . . . . . . . . . 72 9.8 Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10 Results and Conclusion 77 A FEI Skim Definition 81 B Input Variables for Neural Networks 83 B.1 Continuum Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . 83 B.2 BB suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 C Details of Neural Networks 87 C.1 Neural Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . 87 C.1.1 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 C.1.2 Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 C.2 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 D Data-MC Comparison with Control Channel 91 Bibliography 95
dc.language.isoen
dc.title在 Belle II 實驗中尋找 B→Kνν 衰變之可行性分析zh_TW
dc.titleFeasibility Study of Searching B→Kνν Decay at Belle II Experimenten
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.advisor-orcid張寶棣(0000-0003-4064-388X)
dc.contributor.oralexamcommittee張敏娟(Hsin-Tsai Liu),王名儒(Chih-Yang Tseng),徐靜戈
dc.subject.keywordSuperKEKB,Belle II 實驗,B介子,稀有B衰變,強子標籤法,zh_TW
dc.subject.keywordSuperKEKB,Belle II Experiment,B meson,rare B decay,hadronic tag,en
dc.relation.page99
dc.identifier.doi10.6342/NTU202103640
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-1010202113374800.pdf10.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved