Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7945
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童國倫
dc.contributor.authorMinh Hien Leen
dc.contributor.author黎恆明zh_TW
dc.date.accessioned2021-05-19T17:59:47Z-
dc.date.available2021-09-13
dc.date.available2021-05-19T17:59:47Z-
dc.date.copyright2016-09-13
dc.date.issued2016
dc.date.submitted2016-07-18
dc.identifier.citation1. Cheng, X.Q., et al., 'Recent Advances in Polymeric Solvent-Resistant Nanofiltration Membranes', Advances in Polymer Technology, 33, 21455, 2014
2. Mohammad, A.W., et al., 'Nanofiltration membranes review: Recent advances and future prospects', Desalination, 356, 226-254, 2015
3. Marchetti, P., et al., 'Molecular Separation with Organic Solvent Nanofiltration: A Critical Review', Chemical Reviews, 114, 10735-10806, 2014
4. Mulder, M., 'Basic Principles of Membrane Technology, 2nd ed.', Kluwer Academic Publisher: Dordrecht, 2004
5. Koros, W.J.M., Y. H.; Shimidzu, 'Terminology for membranes and membrane process (IUPAC Recommmendations 1996)', Pure and Applied Chemistry, 68, 1479-1489, 1996
6. Rahimpour, A., et al., 'Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening', Applied Surface Science, 256, 1657-1663, 2010
7. D.R. MacHado, D.H., R. Semiat, 'Effect of solvent properties on permeate flow through nanofiltration membranes. Part I: Investigation of parameters affecting solvent flux', Journal of Membrane Science, 163, 93-102, 1999
8. H.J. Zwijnenberg, A.M.K., K. Ebert, K.V. Peinemann, F.P. Cuperus, 'Acetone-stable nanofiltration membranes in deacidifying vegetable oil', Journal of the American Oil Chemists' Society, 76, 83-87, 1999
9. K. Ebert, P.C., 'Solvent resistant nanofiltration membranes in edible oil processing', Membrane Technology, 107, 5-8, 1999
10. D.R. Machado, D.H., R. Semiat, 'Effect of solvent properties on permeate flow through nanofiltration membranes. Part II: Transport model', Journal of Membrane Science, 166, 63-69, 2000
11. A.W. Mohammad , Y.H.T., W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, 'Nanofiltration membranes review: Recent advances and future prospects', Desalination, 356, 226-254, 2015
12. Vandezande, P., L.E.M. Gevers, and I.F.J. Vankelecom, 'Solvent resistant nanofiltration: separating on a molecular level', Chemical Society Reviews, 37, 365-405, 2008
13. White, L.S., 'Transport properties of a polyimide solvent resistant nanofiltration membrane', Journal of Membrane Science, 205, 191-202, 2002
14. Gevers, L.E.M., et al., 'Physico-chemical interpretation of the SRNF transport mechanism for solutes through dense silicone membranes', Journal of Membrane Science, 274, 173-182, 2006
15. Vandezande, P., et al., 'High throughput screening for rapid development of membranes and membrane processes', Journal of Membrane Science, 250, 305-310, 2005
16. Bhanushali, D., et al., 'Performance of solvent-resistant membranes for non-aqueous systems: solvent permeation results and modeling', Journal of Membrane Science, 189, 1-21, 2001
17. Bhanushali, D., S. Kloos, and D. Bhattacharyya, 'Solute transport in solvent-resistant nanofiltration membranes for non-aqueous systems: experimental results and the role of solute–solvent coupling', Journal of Membrane Science, 208, 343-359, 2002
18. Fritsch, D., et al., 'High performance organic solvent nanofiltration membranes: Development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs)', Journal of Membrane Science, 401–402, 222-231, 2012
19. Rohani, R., M. Hyland, and D. Patterson, 'A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols', Journal of Membrane Science, 382, 278-290, 2011
20. Tsuru, T., et al., 'Nanofiltration in non-aqueous solutions by porous silica–zirconia membranes', Journal of Membrane Science, 185, 253-261, 2001
21. Kwiatkowski, J. and M. Cheryan, 'Performance of Nanofiltration Membranes in Ethanol', Separation Science and Technology, 40, 2651-2662, 2005
22. Dutczak, S.M., et al., 'Composite capillary membrane for solvent resistant nanofiltration', Journal of Membrane Science, 372, 182-190, 2011
23. See Toh, Y.H., et al., 'In search of a standard method for the characterisation of organic solvent nanofiltration membranes', Journal of Membrane Science, 291, 120-125, 2007
24. Van der Bruggen, B., et al., 'Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration', Journal of Membrane Science, 156, 29-41, 1999
25. Stafie, N., D.F. Stamatialis, and M. Wessling, 'Effect of PDMS cross-linking degree on the permeation performance of PAN/PDMS composite nanofiltration membranes', Separation and Purification Technology, 45, 220-231, 2005
26. http://www.hussgroup.com/cdc-liquid/en/infocenter/Dead-End.php
27. Mulder, M., 'Basic Principles of Membrane Technology, 2nd edition', Kluwer Academic Publishers: Dordretcht, 2004
28. Vankelecom, I.F.J.D.S., K.; Gevers, L. E. M.; Jacobs, P. A. Schaefer, A. I.; Fane, A. G.; Waite, T. D., Eds.; Elsevier: Oxford, UK, 2005, 'Nanofiltration, Principles and Applications', Schaefer, A. I.; Fane, A. G.; Waite, T. D., Eds.; Elsevier: Oxford, UK, 2005
29. Vankelecom, I.F.J.G., L. E. M, 'Green Separation Processes: Fundamentals and Applications', Alfonso, C. A. M.; Crespo, J. G., Eds.; Wiley-VCH: Weinheim, Germany, 2005
30. https://www.pall.com/main/food-and-beverage/product.page?lid=gri78l4d
31. G. Dudziak, T.H., A. Nickel, P. Puhlfuerss and I. Voigt, Eur. Pat., EP1603663, 2004, 2004
32. Tsuru, T., et al., 'Nanoporous titania membranes for permeation and filtration of organic solutions', Desalination, 233, 1-9, 2008
33. Voigt, I., et al., 'Integrated cleaning of coloured waste water by ceramic NF membranes', Separation and Purification Technology, 25, 509-512, 2001
34. Tsuru, T., et al., 'Inorganic porous membranes for nanofiltration of nonaqueous solutions', Separation and Purification Technology, 32, 105-109, 2003
35. Van Gestel, T., et al., 'Surface modification of γ-Al2O3/TiO2 multilayer membranes for applications in non-polar organic solvents', Journal of Membrane Science, 224, 3-10, 2003
36. Tsuru, T., et al., 'Permeation of nonaqueous solution through organic/inorganic hybrid nanoporous membranes', AIChE Journal, 50, 1080-1087, 2004
37. Dudziak, G.H., T.; Nickel, A.; Puhlfuerss, P.; Voigt, I., Eur. Patent 1,603,663, 2004
38. Tsuru, T., et al., 'Preparation of hydrophobic nanoporous methylated SiO2 membranes and application to nanofiltration of hexane solutions', Journal of Membrane Science, 384, 149-156, 2011
39. Rezaei Hosseinabadi, S., et al., 'Organic solvent nanofiltration with Grignard functionalised ceramic nanofiltration membranes', Journal of Membrane Science, 454, 496-504, 2014
40. Chen, H.Z. and T.-S. Chung, 'CO2-selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance', International Journal of Hydrogen Energy, 37, 6001-6011, 2012
41. Das, J.K., N. Das, and S. Bandyopadhyay, 'Highly selective SAPO 34 membrane on surface modified clay–alumina tubular support for H2/CO2 separation', International Journal of Hydrogen Energy, 37, 10354-10364, 2012
42. Itta, A.K., H.-H. Tseng, and M.-Y. Wey, 'Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H2/N2 separation', International Journal of Hydrogen Energy, 35, 1650-1658, 2010
43. Kim, S., et al., 'Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment', Journal of Membrane Science, 294, 147-158, 2007
44. Kong, C., et al., 'Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination', Journal of Membrane Science, 362, 76-80, 2010
45. Kong, C., et al., 'Thin carbon-zeolite composite membrane prepared on ceramic tube filter by vacuum slip casting for oxygen/nitrogen separation', Carbon, 45, 2848-2850, 2007
46. Tseng, H.-H., P.-T. Shiu, and Y.-S. Lin, 'Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation', International Journal of Hydrogen Energy, 36, 15352-15363, 2011
47. Weng, T.-H., H.-H. Tseng, and M.-Y. Wey, 'Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation', International Journal of Hydrogen Energy, 35, 6971-6983, 2010
48. Yaghi, O.M., et al., 'Reticular synthesis and the design of new materials', Nature, 423, 705-714, 2003
49. Xu, Z., 'A selective review on the making of coordination networks with potential semiconductive properties', Coordination Chemistry Reviews, 250, 2745-2757, 2006
50. McGuire, C.V. and R.S. Forgan, 'The surface chemistry of metal-organic frameworks', Chemical Communications, 51, 5199-5217, 2015
51. Kuppler, R.J., et al., 'Potential applications of metal-organic frameworks', Coordination Chemistry Reviews, 253, 3042-3066, 2009
52. Zhang, S.-Y., Z. Zhang, and M.J. Zaworotko, 'Topology, chirality and interpenetration in coordination polymers', Chemical Communications, 49, 9700-9703, 2013
53. Shah, M., et al., 'Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges', Industrial & Engineering Chemistry Research, 51, 2179-2199, 2012
54. Férey, G., et al., 'A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area', Science, 309, 2040-2042, 2005
55. Yang, J., et al., 'Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior', Microporous and Mesoporous Materials, 130, 174-179, 2010
56. Kim, J., Y.-R. Lee, and W.-S. Ahn, 'Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding: high surface area and high yield synthesis with minimum purification', Chemical Communications, 49, 7647-7649, 2013
57. Liang, Z., et al., 'Comparison of Conventional and HF-Free-Synthesized MIL-101 for CO2 Adsorption Separation and Their Water Stabilities', Energy & Fuels, 27, 7612-7618, 2013
58. Khan, N.A., et al., 'Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101', Chemical Engineering Journal, 166, 1152-1157, 2011
59. Zhou, J.-J.L., Kai-Yu; Kong, Chun-Long; Chen, Liang;, 'Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties', Bulletin of the Korean Chemical Society, 34, 1625-1631, 2013
60. Yang, L.-T., et al., 'Rapid hydrothermal synthesis of MIL-101(Cr) metal–organic framework nanocrystals using expanded graphite as a structure-directing template', Inorganic Chemistry Communications, 35, 265-267, 2013
61. Zhao, T., et al., 'High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr)', Dalton Transactions, 44, 16791-16801, 2015
62. Song, L., et al., 'Mesoporous metal-organic frameworks: design and applications', Energy & Environmental Science, 5, 7508-7520, 2012
63. Bhattacharjee, S., C. Chen, and W.-S. Ahn, 'Chromium terephthalate metal-organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis', RSC Advances, 4, 52500-52525, 2014
64. Pan, Y., et al., 'Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework', Chemical Communications, 46, 2280-2282, 2010
65. Yang, C.-X., et al., 'High-Performance Separation of Fullerenes on Metal–Organic Framework MIL-101(Cr)', Chemistry – A European Journal, 17, 11734-11737, 2011
66. Ramos-Fernandez, E.V., et al., 'MOFs meet monoliths: Hierarchical structuring metal organic framework catalysts', Applied Catalysis A: General, 391, 261-267, 2011
67. Anbia, M. and V. Hoseini, 'Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide', Chemical Engineering Journal, 191, 326-330, 2012
68. Jiang, D., et al., 'Facile synthesis of metal-organic framework films via in situ seeding of nanoparticles', Chemical Communications, 48, 4965-4967, 2012
69. Liu, X., et al., 'Syntheses, Characterizations and Adsorption Properties of MIL-101/Graphene Oxide Composites', Chinese Journal of Chemistry, 30, 2563-2566, 2012
70. Sorribas, S., et al., 'High Flux Thin Film Nanocomposite Membranes Based on Metal–Organic Frameworks for Organic Solvent Nanofiltration', Journal of the American Chemical Society, 135, 15201-15208, 2013
71. Somayajulu Rallapalli, P.B., et al., 'Activated carbon @ MIL-101(Cr): a potential metal-organic framework composite material for hydrogen storage', International Journal of Energy Research, 37, 746-753, 2013
72. Ahmed, I., N.A. Khan, and S.H. Jhung, 'Graphite Oxide/Metal–Organic Framework (MIL-101): Remarkable Performance in the Adsorptive Denitrogenation of Model Fuels', Inorganic Chemistry, 52, 14155-14161, 2013
73. Sun, X., et al., 'Adsorption performance of a MIL-101(Cr)/graphite oxide composite for a series of n-alkanes', RSC Advances, 4, 56216-56223, 2014
74. Zhou, X., et al., 'A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone', Journal of Materials Chemistry A, 2, 4722-4730, 2014
75. Xin, Q., et al., 'Enhanced Interfacial Interaction and CO2 Separation Performance of Mixed Matrix Membrane by Incorporating Polyethylenimine-Decorated Metal–Organic Frameworks', ACS Applied Materials & Interfaces, 7, 1065-1077, 2015
76. Lin, Y., et al., 'Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites', Journal of Materials Chemistry A, 2, 14658-14665, 2014
77. A. Yu. Alentiev , G.N.B., Yu. V. Kostina, V. P. Shantarovich, S. N. Klyamkin, V. P. Fedin, K. A. Kovalenko, Yu. P. Yampolskii, 'PIM-1/MIL-101 hybrid composite membrane material: Transport properties and free volume', Petroleum Chemistry 54, 477-481, 2014
78. Lin, R., et al., 'Mixed-Matrix Membranes with Metal–Organic Framework-Decorated CNT Fillers for Efficient CO2 Separation', ACS Applied Materials & Interfaces, 7, 14750-14757, 2015
79. Naseri, M., et al., 'Synthesis and gas transport performance of MIL-101/Matrimid mixed matrix membranes', Journal of Industrial and Engineering Chemistry, 29, 249-256, 2015
80. de la Iglesia, Ó., et al., 'Metal-organic framework MIL-101(Cr) based mixed matrix membranes for esterification of ethanol and acetic acid in a membrane reactor', Renewable Energy, 88, 12-19, 2016
81. Hermes, S., et al., 'Selective Nucleation and Growth of Metal−Organic Open Framework Thin Films on Patterned COOH/CF3-Terminated Self-Assembled Monolayers on Au(111)', Journal of the American Chemical Society, 127, 13744-13745, 2005
82. Kepert, C.J., 'Advanced functional properties in nanoporous coordination framework materials', Chemical Communications, 695-700, 2006
83. Biemmi, E., C. Scherb, and T. Bein, 'Oriented Growth of the Metal Organic Framework Cu3(BTC)2(H2O)3•xH2O Tunable with Functionalized Self-Assembled Monolayers', Journal of the American Chemical Society, 129, 8054-8055, 2007
84. Hermes, S., et al., 'Selective Growth and MOCVD Loading of Small Single Crystals of MOF-5 at Alumina and Silica Surfaces Modified with Organic Self-Assembled Monolayers', Chemistry of Materials, 19, 2168-2173, 2007
85. Zacher, D., et al., 'Deposition of microcrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: evidence of surface selective and oriented growth', Journal of Materials Chemistry, 17, 2785-2792, 2007
86. Qiu, S., M. Xue, and G. Zhu, 'Metal-organic framework membranes: from synthesis to separation application', Chemical Society Reviews, 43, 6116-6140, 2014
87. Li, W., et al., 'Metal−organic framework composite membranes: Synthesis and separation applications', Chemical Engineering Science, 135, 232-257, 2015
88. Liu, Y., et al., 'Synthesis of continuous MOF-5 membranes on porous α-alumina substrates', Microporous and Mesoporous Materials, 118, 296-301, 2009
89. Aceituno Melgar, V.M., H.T. Kwon, and J. Kim, 'Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition', Journal of Membrane Science, 459, 190-196, 2014
90. Hara, N., et al., 'Metal-organic framework membranes with layered structure prepared within the porous support', RSC Advances, 3, 14233-14236, 2013
91. Yoo, Y., Z. Lai, and H.-K. Jeong, 'Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth', Microporous and Mesoporous Materials, 123, 100-106, 2009
92. Xomeritakis, G., Z. Lai, and M. Tsapatsis, 'Separation of Xylene Isomer Vapors with Oriented MFI Membranes Made by Seeded Growth', Industrial & Engineering Chemistry Research, 40, 544-552, 2001
93. Lai, Z., et al., 'Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation', Science, 300, 456-460, 2003
94. Lai, Z., M. Tsapatsis, and J.P. Nicolich, 'Siliceous ZSM-5 Membranes by Secondary Growth of b-Oriented Seed Layers', Advanced Functional Materials, 14, 716-729, 2004
95. Choi, J., et al., 'Uniformly a-Oriented MFI Zeolite Films by Secondary Growth', Angewandte Chemie International Edition, 45, 1154-1158, 2006
96. Caro, J. and M. Noack, 'Zeolite membranes – Recent developments and progress', Microporous and Mesoporous Materials, 115, 215-233, 2008
97. Arnold, M., et al., 'Oriented Crystallisation on Supports and Anisotropic Mass Transport of the Metal-Organic Framework Manganese Formate', European Journal of Inorganic Chemistry, 2007, 60-64, 2007
98. Gascon, J., S. Aguado, and F. Kapteijn, 'Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina', Microporous and Mesoporous Materials, 113, 132-138, 2008
99. Bux, H., et al., 'Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis', Journal of the American Chemical Society, 131, 16000-16001, 2009
100. Shah, M.N., et al., 'An Unconventional Rapid Synthesis of High Performance Metal–Organic Framework Membranes', Langmuir, 29, 7896-7902, 2013
101. Shekhah, O., et al., 'The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study', Chemical Communications, 50, 2089-2092, 2014
102. Ameloot, R., et al., 'Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability', Nat Chem, 3, 382-387, 2011
103. Kwon, H.T. and H.-K. Jeong, 'In Situ Synthesis of Thin Zeolitic–Imidazolate Framework ZIF-8 Membranes Exhibiting Exceptionally High Propylene/Propane Separation', Journal of the American Chemical Society, 135, 10763-10768, 2013
104. Sun, Y., et al., 'Self-modified fabrication of inner skin ZIF-8 tubular membranes by a counter diffusion assisted secondary growth method', RSC Advances, 4, 33007-33012, 2014
105. Huang, K., et al., 'A ZIF-71 Hollow Fiber Membrane Fabricated by Contra-Diffusion', ACS Applied Materials & Interfaces, 7, 16157-16160, 2015
106. Hara, N., et al., 'ZIF-8 membranes prepared at miscible and immiscible liquid–liquid interfaces', Microporous and Mesoporous Materials, 206, 75-80, 2015
107. Ranjan, R. and M. Tsapatsis, 'Microporous Metal Organic Framework Membrane on Porous Support Using the Seeded Growth Method', Chemistry of Materials, 21, 4920-4924, 2009
108. Zhou, S., et al., 'Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation', Journal of Materials Chemistry, 22, 10322-10328, 2012
109. Li, Y.-S., et al., 'Molecular Sieve Membrane: Supported Metal–Organic Framework with High Hydrogen Selectivity', Angewandte Chemie International Edition, 49, 548-551, 2010
110. Bux, H., et al., 'Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp H2/C3H8 Molecular Sieve Separation', Chemistry of Materials, 23, 2262-2269, 2011
111. Guerrero, V.V., et al., 'HKUST-1 membranes on porous supports using secondary growth', Journal of Materials Chemistry, 20, 3938-3943, 2010
112. Tao, K., C. Kong, and L. Chen, 'High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition', Chemical Engineering Journal, 220, 1-5, 2013
113. Nan, J., et al., 'Step-by-Step Seeding Procedure for Preparing HKUST-1 Membrane on Porous α-Alumina Support', Langmuir, 27, 4309-4312, 2011
114. Liu, Y., et al., 'Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties', Journal of Membrane Science, 379, 46-51, 2011
115. Pan, Y., et al., 'Effective separation of propylene/propane binary mixtures by ZIF-8 membranes', Journal of Membrane Science, 390–391, 93-98, 2012
116. Guo, H., et al., '“Twin Copper Source” Growth of Metal−Organic Framework Membrane: Cu3(BTC)2 with High Permeability and Selectivity for Recycling H2', Journal of the American Chemical Society, 131, 1646-1647, 2009
117. McCarthy, M.C., et al., 'Synthesis of Zeolitic Imidazolate Framework Films and Membranes with Controlled Microstructures', Langmuir, 26, 14636-14641, 2010
118. Zhang, X., et al., 'A simple and scalable method for preparing low-defect ZIF-8 tubular membranes', Journal of Materials Chemistry A, 1, 10635-10638, 2013
119. Zhang, X., et al., 'New Membrane Architecture with High Performance: ZIF-8 Membrane Supported on Vertically Aligned ZnO Nanorods for Gas Permeation and Separation', Chemistry of Materials, 26, 1975-1981, 2014
120. Hu, Y., et al., 'Metal-organic framework membranes fabricated via reactive seeding', Chemical Communications, 47, 737-739, 2011
121. Dong, X., et al., 'Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination', Journal of Materials Chemistry, 22, 19222-19227, 2012
122. Dong, X. and Y.S. Lin, 'Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation', Chemical Communications, 49, 1196-1198, 2013
123. Huang, A., W. Dou, and J. Caro, 'Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization', Journal of the American Chemical Society, 132, 15562-15564, 2010
124. Huang, A., et al., 'Molecular-Sieve Membrane with Hydrogen Permselectivity: ZIF-22 in LTA Topology Prepared with 3-Aminopropyltriethoxysilane as Covalent Linker', Angewandte Chemie International Edition, 49, 4958-4961, 2010
125. Huang, A. and J. Caro, 'Covalent Post-Functionalization of Zeolitic Imidazolate Framework ZIF-90 Membrane for Enhanced Hydrogen Selectivity', Angewandte Chemie International Edition, 50, 4979-4982, 2011
126. Huang, A., et al., 'A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation', Chemical Communications, 48, 10981-10983, 2012
127. Huang, A., et al., 'Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets', Journal of Materials Chemistry A, 2, 8246-8251, 2014
128. Li, Y.-S., et al., 'Controllable Synthesis of Metal–Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes', Advanced Materials, 22, 3322-3326, 2010
129. Li, Y., et al., 'Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation', Journal of Membrane Science, 354, 48-54, 2010
130. Xie, Z., et al., 'Deposition of chemically modified [small alpha]-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube', Chemical Communications, 48, 5977-5979, 2012
131. Liu, Q., et al., 'Bio-Inspired Polydopamine: A Versatile and Powerful Platform for Covalent Synthesis of Molecular Sieve Membranes', Journal of the American Chemical Society, 135, 17679-17682, 2013
132. Bux, H., et al., 'Novel MOF-Membrane for Molecular Sieving Predicted by IR-Diffusion Studies and Molecular Modeling', Advanced Materials, 22, 4741-4743, 2010
133. Bux, H., et al., 'Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion', Journal of Membrane Science, 369, 284-289, 2011
134. Hara, N., et al., 'Diffusive separation of propylene/propane with ZIF-8 membranes', Journal of Membrane Science, 450, 215-223, 2014
135. Huang, A., et al., 'Organosilica-Functionalized Zeolitic Imidazolate Framework ZIF-90 Membrane with High Gas-Separation Performance', Angewandte Chemie International Edition, 51, 10551-10555, 2012
136. Zhang, F., et al., 'Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability', Advanced Functional Materials, 22, 3583-3590, 2012
137. Zhao, Z., et al., 'Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes', Industrial & Engineering Chemistry Research, 52, 1102-1108, 2013
138. Mao, Y., et al., 'Enhanced gas separation through well-intergrown MOF membranes: seed morphology and crystal growth effects', Journal of Materials Chemistry A, 1, 11711-11716, 2013
139. Mao, Y., et al., 'HKUST-1 Membranes Anchored on Porous Substrate by Hetero MIL-110 Nanorod Array Seeds', Chemistry – A European Journal, 19, 11883-11886, 2013
140. Liu, Y., et al., 'Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture', Journal of Membrane Science, 353, 36-40, 2010
141. Aguado, S., et al., 'Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2', New Journal of Chemistry, 35, 41-44, 2011
142. Zhang, C., et al., 'A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture', Chemical Communications, 49, 600-602, 2013
143. Xie, Z., et al., 'Alumina-supported cobalt-adeninate MOF membranes for CO2/CH4 separation', Journal of Materials Chemistry A, 2, 1239-1241, 2014
144. Zou, X., et al., 'Co3(HCOO)6 Microporous Metal–Organic Framework Membrane for Separation of CO2/CH4 Mixtures', Chemistry – A European Journal, 17, 12076-12083, 2011
145. Yin, H., et al., 'A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2-N2 separation', Chemical Communications, 50, 3699-3701, 2014
146. Diestel, L., et al., 'Pervaporation studies of n-hexane, benzene, mesitylene and their mixtures on zeolitic imidazolate framework-8 membranes', Microporous and Mesoporous Materials, 164, 288-293, 2012
147. Fan, L., et al., 'ZIF-78 membrane derived from amorphous precursors with permselectivity for cyclohexanone/cyclohexanol mixture', Microporous and Mesoporous Materials, 192, 29-34, 2014
148. Wang, W., et al., 'A homochiral metal-organic framework membrane for enantioselective separation', Chemical Communications, 48, 7022-7024, 2012
149. Khan, N.A., J.W. Jun, and S.H. Jhung, 'Effect of Water Concentration and Acidity on the Synthesis of Porous Chromium Benzenedicarboxylates', European Journal of Inorganic Chemistry, 2010, 1043-1048, 2010
150. Jiang, D., A.D. Burrows, and K.J. Edler, 'Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for CO2 over N2', CrystEngComm, 13, 6916-6919, 2011
151. Xu, G., et al., 'Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel', Journal of Membrane Science, 385–386, 187-193, 2011
152. Jiang, D., et al., 'Polymer-assisted synthesis of nanocrystalline copper-based metal–organic framework for amine oxidation', Catalysis Communications, 12, 602-605, 2011
153. Bauer, S., et al., 'High-Throughput Assisted Rationalization of the Formation of Metal Organic Frameworks in the Iron(III) Aminoterephthalate Solvothermal System', Inorganic Chemistry, 47, 7568-7576, 2008
154. Car, A., C. Stropnik, and K.-V. Peinemann, 'Euromembrane 2006Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation', Desalination, 200, 424-426, 2006
155. Zornoza, B., et al., 'Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential', Microporous and Mesoporous Materials, 166, 67-78, 2013
156. Bowen, W.R. and J.S. Welfoot, 'Modelling of membrane nanofiltration—pore size distribution effects', Chemical Engineering Science, 57, 1393-1407, 2002
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7945-
dc.description.abstractThe purpose of this study is using an in-situ assisted acetic acid procedure to prepare a MIL-101 as filler in ceramic membrane. The MIL-101 membrane is firstly applied for organic solvent nanofiltration. In this study, the effects of synthetic conditions are investigated to get an invisible defect membrane and nanofiltration performance is also checked to prove the feasible application of MIL-101 membrane.
Incorporation of metal organic framework (MIL-101) as filler on ceramic membrane is firstly investigated. In-situ method assisted by acid modular is utilized to synthesize uniform and defect-free MIL-101 membrane. Effect of additives such as NaOH, HF, CH3COOH and concentration of reactants are surveyed to find out the optimal synthetic conditions. Synthesis of MIL-101 membrane by using in-situ acetic acid-assisted method is proved as efficient way to prepare a compact and dense MIL-101 layer compared to other methods as thermal seeding method, layer by layer seeding method. The MIL-101 membranes are characterized by using a variety of different techniques, including X-ray thin film diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy EDX.
MIL-101 is chosen as material filler for membrane in nanofiltration application because of its ability to form the largest pore size in the MOFs’ family and a number of its prominent properties for molecular separation applications such as high surface area and well-defined pore size. Besides, MIL-101 and ceramic substrate are inorganic materials, so they are able to be stable in harsh solvent such as N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), those usually dissolve common polymers. The MIL-101 membranes are applied in organic solvent nanofiltration (OSN) by testing separation of Rose Bengal (RB) from NMP, DMSO, DMAc and ethanol. The MIL-101 membranes show a significantly high rejection but lower permeance compared to bare ceramic membrane. The best flux and rejection of MIL-101 membrane with RB ethanol solution are 1.65 lm-2h-1bar-1 and 99.7% respectively where ratio of chromium nitrate, benzendicarboxylic acid and water is 1:1:277, respectively and 0.8 ml of CH3COOH. The MIL-101 membranes also exhibit the stability under harsh solvent with high rejection of RB and constant flux within 3 hours.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:59:47Z (GMT). No. of bitstreams: 1
ntu-105-R03524099-1.pdf: 4511501 bytes, checksum: 69e2ae09a971fdefbf3fe0c762e86433 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsACKNOWLEDGEMENT i
ABSTRACT ii
LIST OF FIGURES vi
LIST OF TABLE ix
Chapter 1 - Introduction 1
1.1 General overview 1
1.2 Objective 3
Chapter 2 - Literature review 5
2.1 Nanofiltration 5
2.2 Organic Solvent Nanofiltration 8
2.2.1 Classification of organic solvent nanofiltration 9
2.2.2 Membrane characterization 11
2.2 3. System design 13
2.2.4 OSN material and ceramic membrane for OSN 15
2.2.5 Challenges and future development 22
2.3 Metal organic framework – MIL-101 and MOF membranes 24
2.3.1 Metal organic framework 24
2.3.2 MIL-101 26
2.3.3 Metal organic framework composite membranes 35
Chapter 3 - Experimental methods and equipment 54
3.1 Experimental materials 54
3.1.1 Supports 54
3.1.2 Chemicals for MIL-101 particles and MIL-101 membranes 55
3.1.3 Chemical for OSN performance 55
3.2 Experiment 56
3.2.1 Synthesis of MIL-101 particles 56
3.2.2 Synthesis MIL-101 membranes 57
3.3 Characterization of MIL-101 and MIL-101 membrane 60
3.3.1 Field-emission scanning electron microscope (FESEM) 60
3.3.2. X-ray diffracatometer for particles (XRD) 60
3.3.3. X-ray diffracatometer for thin film(XRD) 61
3.3.4 Specific surface area analyzer 61
3.3.5 UV/VIS Spectrophotometer 61
3.4 Nanofiltration performance 62
Chapter 4 - Results and conclusions 64
4.1. Characterization of MIL-101 nanoparticles 64
4.2. Characterization of MIL-101 membranes 68
4.2.1 Effect of additives 68
4.2.2 Effect of concentration of reactants on in situ method 71
4.2.3 Effect of amount of acetic acid 74
4.2.4 Effect of concentration of reactants in defect healing procedure 77
4.2.5 Compare to other methods 79
4.3 OSN performance 81
Chapter 5 Conclusion 88
Chapter 6 Reference 90
dc.language.isoen
dc.titleMIL-101陶瓷膜之製備及其於有機溶劑奈米過濾之應用zh_TW
dc.titleSynthesis of MIL-101 supported on ceramic membrane for organic solvent nanofiltrationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃國楨,莊清榮,林俊德
dc.subject.keyword有機溶劑奈米過濾,MIL-101,陶瓷膜,zh_TW
dc.subject.keywordorganic solvent nanofiltration,MIL-101,ceramic membrane,in-situ method,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201600805
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-07-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf4.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved