Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79441
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李承叡(Cheng- Ruei Lee)
dc.contributor.authorShang-Ying Tienen
dc.contributor.author田上穎zh_TW
dc.date.accessioned2022-11-23T09:00:32Z-
dc.date.available2021-11-04
dc.date.available2022-11-23T09:00:32Z-
dc.date.copyright2021-11-04
dc.date.issued2021
dc.date.submitted2021-10-20
dc.identifier.citationAfkhami, M.E., Friesen, M.L., and Stinchcombe, J.R. (2021). Multiple Mutualist Effects generate synergistic selection and strengthen fitness alignment in a tripartite interaction between legumes , rhizobia , and mycorrhizal fungi. bioRxiv: 1–27. Afkhami, M.E., Rudgers, J.A., and Srachowicz, J.J. (2014). Multiple mutualist effects: conflict and synergy in multispecies mutualisms. Ecology 95: 833–844. Ali, A., Ali, A., Akhtar, J., and Yaseen, M. (2010). Effects of phosphorus in combination with rhizobium inoculation on growth and yield parameters of mungbean. Environment 1: 53–56. Andrews, M. and Andrews, M.E. (2017). Specificity in legume-rhizobia symbioses. Int. J. Mol. Sci. 18: 705. Ballhorn, D.J., Schädler, M., Elias, J.D., Millar, J.A., and Kautz, S. (2016). Friend or foe - Light availability determines the relationship between mycorrhizal fungi, rhizobia and lima bean (Phaseolus lunatus L.). PLoS One 11: 1–12. Beringer, J.E. (1982). The genetic determination of host range in the rh1zob1aceae. Isr. J. Bot. 31: 89–93. Berrada, H. (2014). Taxonomy of the Rhizobia: Current Perspectives. Br. Microbiol. Res. J. 4: 616–639. Bethlenfalvay, G.J., Bayne, H.G., and Pacovsky, R.S. (1983). Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: The effect of phosphorus on host plant‐endophyte interactions. Physiol. Plant. 57: 543–548. Bonfante, P. and Genre, A. (2015). Arbuscular mycorrhizal dialogues: Do you speak “plantish” or “fungish”? Trends Plant Sci. 20: 150–154. Boonkerd, N. and Weaver, R.W. (1982). Survival of cowpea rhizobia in soil as affected by soil temperature and moisture. Appl. Environ. Microbiol. 43: 585–589. Börstler, B., Thiéry, O., Sýkorová, Z., Berner, A., and Redecker, D. (2010). Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands. Mol. Ecol. 19: 1497–1511. DenCamp, R.H.M.O., Polone, E., Fedorova, E., Roelofsen, W., Squartini, A., DenCamp, H.J.M.O., Bisseling, T., and Geurts, R. (2012). Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Mol. Plant-Microbe Interact. 25: 954–963. Catford, J.G., Staehelin, C., Lerat, S., Piché, Y., and Vierheilig, H. (2003). Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J. Exp. Bot. 54: 1481–1487. Christopher, M., Macdonald, B., Yeates, S., Ziegler, D., and Seymour, N. (2018). Wild bradyrhizobia that occur in the Burdekin region of Queensland are as effective as commercial inoculum for mungbean (Vigna radiata (L.)) and black gram (Vigna mungo (L.)) in fixing nitrogen and dry matter production. Appl. Soil Ecol. 124: 88–94. Dahiya, P.K., Linnemann, A.R., VanBoekel, M.A.J.S., Khetarpaul, N., Grewal, R.B., and Nout, M.J.R. (2015). Mung bean: technological and nutritional potential. Crit. Rev. Food Sci. Nutr. 55: 670–688. Day, L. (2013). Proteins from land plants - potential resources for human nutrition and food security. Trends Food Sci. Technol. 32: 25–42. Delaux, P.M., Varala, K., Edger, P.P., Coruzzi, G.M., Pires, J.C., and Ané, J.M. (2014). Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet. 10: e1004487. Denison, R.F. (2000). Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am. Nat. 156: 567–576. Denison, R.F. and Kiers, E.T. (2011). Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr. Biol. 21: 775–785. Elahi, N.N., Akhtar, W., Mirza, J.I., Nosheen N. Elahi, W.A., and Mirza, J.I. (2004). Effect of combined nitrogen on growth and nodulation of two mungbean (Vigna radiata [L.] Wilczek) cultivars. J. Res. 15: 67–72. Epstein, B. and Tiffin, P. (2021). Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes. Proc. R. Soc. B Biol. Sci. 288: 20201804. Favero, V.O., Carvalho, R.H., Motta, V.M., Leite, A.B.C., Coelho, M.R.R., Xavier, G.R., Rumjanek, N.G., and Urquiaga, S. (2021). Bradyrhizobium as the only rhizobial inhabitant of mung bean (Vigna radiata) nodules in tropical soils: a strategy based on microbiome for improving biological nitrogen fixation using bio-products. Front. Plant Sci. 11: 1–16. Fellbaum, C.R., Mensah, J.A., Pfeffer, P.E., Toby Kiers, E., and Bücking, H. (2012). The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis. Plant Signal. Behav. 7. Friede, M., Unger, S., Heuer, L., Stammes, R., and Beyschlag, W. (2018). Nitrogen limitation impairs plant control over the arbuscular mycorrhizal symbiosis in response to phosphorus and shading in two European sand dune species. Plant Ecol. 219: 17–29. Friel, C.A. and Friesen, M.L. (2019). Legumes modulate allocation to rhizobial nitrogen fixation in response to factorial light and nitrogen manipulation. Front. Plant Sci. 10: 1–9. Gruber, N. and Galloway, J.N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature 451: 293–296. Hakim, S., Mirza, B.S., Imran, A., Zaheer, A., Yasmin, S., Mubeen, F., Mclean, J.E., and Mirza, M.S. (2020). Illumina sequencing of 16S rRNA tag shows disparity in rhizobial and non- rhizobial diversity associated with root nodules of mung bean (Vigna radiata L .) growing in different habitats in Pakistan. Microbiol. Res. 231: 126356. Hakim, S., Mirza, B.S., Zaheer, A., Mclean, J.E., Imran, A., Yasmin, S., and Sajjad Mirza, M. (2018). Retrieved 16S rRNA and nifH sequences reveal co-dominance of Bradyrhizobium and Ensifer (Sinorhizobium) strains in field-collected root nodules of the promiscuous host Vigna radiata (L.) R. Wilczek. Appl. Microbiol. Biotechnol. 102: 485–497. Harrison, T.L., Simonsen, A.K., Stinchcombe, J.R., and Frederickson, M.E. (2018). More partners, more ranges: generalist legumes spread more easily around the globe. Biol. Lett. 14. Heath, K.D., Podowski, J.C., Heniff, S., Klinger, C.R., Burke, P.V., Weese, D.J., Yang, W.H., and Lau, J.A. (2020). Light availability and rhizobium variation interactively mediate the outcomes of legume–rhizobium symbiosis. Am. J. Bot. 107: 229–238. Hildebrandt, U., Regvar, M., and Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68: 139–146. Huang, S.C., Lin, Y.C., Liu, K.F., and Chen, C.T. (2011). Microplate method for plant total nitrogen and phosphorus analysis. Taiwan. J. Agric. Chem. Food Sci. 49: 19–25. Johnson, N.C., Graham, J.H., and Smith, F.A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135: 575–585. Jordan, D.C. (1982). Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32: 136–139. Kiers, E.T. and West, S.A. (2015). Evolving new organisms via symbiosis. Science 348: 392–394. Latef, A.A.H.A., Hashem, A., Rasool, S., Abd-Allah, E.F., Alqarawi, A.A., Egamberdieva, D., Jan, S., Anjum, N.A., and Ahmad, P. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. J. Plant Biol. 59: 407–426. Lawn, R.J. and Rebetzke, G.J. (2006). Variation among Australian accessions of the wild mungbean (Vigna radiata ssp. sublobata) for traits of agronomic, adaptive, or taxonomic interest. Aust. J. Agric. Res. 57: 119–132. DeLey, J. (1989). DNA base composition and hybridization in the taxonomy of phytpathogentic bacteria. October 2: 1–19. Lowendorf, H.S., Baya, A.M., and Alexander, M. (1981). Survival of Rhizobium in acid soils. Appl. Environ. Microbiol. 42: 951–957. Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541–556. Marchiol, L. (2019). Nanofertilisers. An outlook of crop nutrition in the fourth agricultural revolution. Ital. J. Agron. 14: 183–190. McClements, D.J. and Grossmann, L. (2021). The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Compr. Rev. Food Sci. Food Saf.: 1–52. Muleta, D., Assefa, F., Nemomissa, S., and Granhall, U. (2007). Composition of coffee shade tree species and density of indigenous arbuscular mycorrhizal fungi (AMF) spores in Bonga natural coffee forest, southwestern Ethiopia. For. Ecol. Manage. 241: 145–154. Nabintu, B.N. (2013). Effectiveness of rhizobia strains isolated from south Kivu soils (Eastern D.R. Congo) on nodulation growth of soybeans (Glycine max).: 111. Nanjareddy, K., Arthikala, M.K., Gómez, B.M., Blanco, L., and Lara, M. (2017). Differentially expressed genes in mycorrhized and nodulated roots of common bean are associated with defense, cell wall architecture, N metabolism, and P metabolism. PLoS One 12: 1–25. Narozna, D., Pudełko, K., Króliczak, J., Golińska, B., Sugawara, M., Madrzak, C.J., and Sadowsky, M.J. (2015). Survival and competitiveness of Bradyrhizobium japonicum strains 20 years after introduction into field locations in Poland. Appl. Environ. Microbiol. 81: 5552–5559. Osa-Afiana, L.O. and Alexander, M. (1979). Effect of moisture on the survival of Rhizobium in soil. Soil Sci. Soc. Am. J. 43: 925–930. Ossler, J.N., Zielinski, C.A., and Heath, K.D. (2015). Tripartite mutualism: facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts. Am. J. Bot. 102: 1332–1341. Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6: 763–775. Pastorino, G., Alcántara, V., Malbrán, I., Videira, L., Sarinelli, J., and Balatti, P. (2015). Ensifer (Sinorhizobium) fredii interacted more efficiently than Bradyrhizobium japonicum with soybean. J. Agric. Ecol. Res. Int. 2: 10–19. Pereira, S., Mucha, Â., Gonçalves, B., Bacelar, E., Látr, A., Ferreira, H., Oliveira, I., Rosa, E., and Marques, G. (2019). Improvement of some growth and yield parameters of faba bean (Vicia faba) by inoculation with Rhizobium laguerreae and arbuscular mycorrhizal fungi. Crop Pasture Sci. 70: 595–605. Pueppke, S.G. and Broughton, W.J. (1999). Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant-Microbe Interact. 12: 293–318. Regus, J.U., Gano, K.A., Hollowell, A.C., Sofish, V., and Sachs, J.L. (2015). Lotus hosts delimit the mutualism-parasitism continuum of Bradyrhizobium. J. Evol. Biol. 28: 447–456. Risal, C.P., Djedidi, S., Dhakal, D., Ohkama-Ohtsu, N., Sekimoto, H., and Yokoyama, T. (2012). Phylogenetic diversity and symbiotic functioning in mungbean (Vigna radiata L. Wilczek) bradyrhizobia from contrast agro-ecological regions of Nepal. Syst. Appl. Microbiol. 35: 45–53. Roth, R. et al. (2018). A rice serine/threonine receptor-like kinase regulates arbuscular mycorrhizal symbiosis at the peri-arbuscular membrane. Nat. Commun. 9. Roy, S., Liu, W., Nandety, R.S., Crook, A., Mysore, K.S., Pislariu, C.I., Frugoli, J., Dickstein, R., and Udvardi, M.K. (2020). Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32: 15–41. Saravanakumar, P., Kaga, A., Tomooka, N., and Vaughan, D.A. (2004). AFLP and RAPD analyses of intra- and interspecific variation in some Vigna subgenus Ceratotropis (Leguminosae) species. Aust. J. Bot. 52: 417–424. Schafleitner, R., Nair, R.M., Rathore, A., Wang, Y.W., Lin, C.Y., Chu, S.H., Lin, P.Y., Chang, J.C., and Ebert, A.W. (2015). The AVRDC - the world vegetable center mungbean (Vigna radiata) core and mini core collections. BMC Genomics 16: 1–11. Shukla, A., Kumar, A., Chaturvedi, O.P., Nagori, T., Kumar, N., and Gupta, A. (2018). Efficacy of rhizobial and phosphate-solubilizing bacteria and arbuscular mycorrhizal fungi to ameliorate shade response on six pulse crops. Agrofor. Syst. 92: 499–509. Singleton, P.W., ElSwaify, S.A., and Bohlool, B.B. (1982). Effect of salinity on Rhizobium growth and survival. Appl. Environ. Microbiol. 44: 884–890. Stürmer, S.L. (2012). A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22: 247–258. Symanczik, S., Courty, P.E., Boller, T., Wiemken, A., and Al-Yahya’ei, M.N. (2015). Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza 25: 639–647. Tao, L., Gowler, C.D., Ahmad, A., Hunter, M.D., and DeRoode, J.C. (2015). Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions. Proc. R. Soc. B Biol. Sci. 282: 20151993. Tian, F., Wang, Y., Zhu, X., Chen, L., and Duan, Y. (2014). Effect of Sinorhizobium fredii strain sneb183 on the biological control of soybean cyst nematode in soybean. J. Basic Microbiol. 54: 1258–1263. Tong, H., Cai, L., Zhou, G., Yuan, T., Zhang, W., Tian, R., Huang, H., and Qian, P.Y. (2017). Temperature shapes coral-algal symbiosis in the South China Sea. Sci. Rep. 7: 1–12. Veresoglou, S.D., Chen, B., Fischer, M.M., Helgason, T., Mamolos, A.P., Rillig, M.C., Roldán, A., and Johnson, D. (2019). Latitudinal constraints in responsiveness of plants to arbuscular mycorrhiza: the ‘sun-worshipper’ hypothesis. New Phytol. 224: 552–556. Webber, H.A., Madramootoo, C.A., Bourgault, M., Horst, M.G., Stulina, G., and Smith, D.L. (2006). Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation. Agric. Water Manag. 86: 259–268. Werner, G.D.A. and Kiers, E.T. (2015). Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol. 205: 1515–1524. Yang, H., Dai, Y., Wang, X., Zhang, Q., Zhu, L., and Bian, X. (2014). Meta-analysis of interactions between arbuscular mycorrhizal fungi and biotic stressors of plants. Sci. World J. 2014. Yang, J.K., Yuan, T.Y., Zhang, W.T., Zhou, J.C., and Li, Y.G. (2008). Polyphasic characterization of mung bean (Vigna radiata L.) rhizobia from different geographical regions of China. Soil Biol. Biochem. 40: 1681–1688. Yaqub, M., Mahmood, T., Akhtar, M., Iqbal, M.M., andAli, S. (2010). Induction of mungbean [Vigna radiata (L.) wilczek] as a grain legume in the annual rice-wheat double cropping system. Pakistan J. Bot. 42: 3125–3135. Yasmeen, T., Hameed, S., Tariq, M., and Ali, S. (2012). Significance of arbuscular mycorrhizal and bacterial symbionts in a tripartite association with Vigna radiata. Acta Physiol. Plant. 34: 1519–1528. Zhang, S., Wang, L., Ma, F., Bloomfield, K.J., Yang, J., and Atkin, O.K. (2013). Is resource allocation and grain yield of rice altered by inoculation with arbuscular mycorrhizal fungi? J. Plant Ecol. 8: 436–448. Zhang, Y.F., Wang, E.T., Tian, C.F., Wang, F.Q., Han, L.L., Chen, W.F., and Chen, W.X. (2008). Bradyrhizobium elkanii, Bradyrhizobium yuanmingense and Bradyrhizobium japonicum are the main rhizobia associated with Vigna unguiculata and Vigna radiata in the subtropical region of China. FEMS Microbiol. Lett. 285: 146–154.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79441-
dc.description.abstract生物在適應的環境的過程中,發展出與其他生物合作的模式,提高自身的生存率,稱之為共生。共生往往受到生物體精細的調控,不同的環境甚至會打破生物間原本的共生關係。植物與其他生物也存在著古老的共生關係,如叢枝菌根菌 (arbuscular mycorrhizal fungi) 可以為宿主提供磷,而根瘤菌 (rhizobia) 可以為豆科植物固氮。豆科植物-根瘤菌-叢枝菌根菌形成三者共生時往往可以幫助豆科植物的生長,但在嚴苛的環境下,三者之間的共生關係是否還能繼續維持?還是會有一種生物變身成寄生生物呢?本篇研究著重於探討三者共生的關係在低光源且營養缺乏的環境中是否會破局,以及兩個綠豆亞種對於兩種土壤共生菌的共生反應是否有所不同。為了盡量涵蓋全球各地的綠豆基因型,我們選用了10個綠豆品系,橫跨野生型綠豆 (Vigna radiata ssp. sublobata) 與栽培型綠豆 (V. radiata ssp. radiata) 的四個族群,含東亞、中亞、南亞、東南亞族群。單獨接種根瘤菌顯著提升兩個綠豆亞種的生長狀況,而單獨接種叢枝菌根菌反而使綠豆生物量下降。共同接種兩種土壤共生菌後,綠豆的生長狀況與單獨接種根瘤菌的情狀相似。另外根瘤菌在共生後期顯著地提升綠豆的相對葉綠素含量。在探討總根瘤鮮重與植物性狀關係的分析中,發現隨著總根瘤鮮重的上升,植物性狀大多都會跟著提升,而叢枝菌根菌的存在則使相關性下降。五個野生型綠豆品系皆會與根瘤菌形成根瘤,栽培品系綠豆則顯示出不同的結果:西亞和中亞族群形成極多根瘤而南亞與東南亞族群卻無法或形成少數根瘤。叢枝菌根菌則廣泛地與所有綠品系豆形成共生構造。我們發現根瘤菌可以提升叢枝菌根菌的適應力,而叢枝菌根菌則會使根瘤菌的適應力下降。後續我們擴增至20個綠豆品系測試跟兩種根瘤菌 (Bradyrhizobium japonicum 和 Enifer fredii) 是否會呈現不同的專一性,結果顯示E. fredii對綠豆具有較明顯的宿主專一性,並且專一性與綠豆的族群結構無關。另外B. japonicum對20個品系的綠豆在相對葉綠素含量上相較有E. fredii對更顯著的促進作用。綜合來說,在低光照低養分的環境下對於綠豆來說根瘤菌是較佳的共生夥伴,叢枝菌根菌更像一個寄生生物。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:00:32Z (GMT). No. of bitstreams: 1
U0001-1510202117543900.pdf: 3573211 bytes, checksum: 066e94efd8b2acbd7b09502e6cb6f119 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝---------------------------------------------------------------------------i 摘要---------------------------------------------------------------------------ii Abstract-----------------------------------------------------------------------iii Contents-----------------------------------------------------------------------v Contents of Figures------------------------------------------------------------vii Content of Tables--------------------------------------------------------------viii Introduction-------------------------------------------------------------------1 Materials and Methods----------------------------------------------------------8 Plant material and growth conditions-----------------------------------------8 Experimental design----------------------------------------------------------8 Nutrient solution------------------------------------------------------------9 Inoculation with AMF--------------------------------------------------------10 Inoculation with RH---------------------------------------------------------10 Measurements of plant traits------------------------------------------------11 Nitrogen and phosphorus concentration measurement---------------------------12 AMF staining and quantification---------------------------------------------13 Statistical analysis--------------------------------------------------------14 Results-----------------------------------------------------------------------16 Plant fitness---------------------------------------------------------------16 RH fitness------------------------------------------------------------------20 AMF fitness-----------------------------------------------------------------21 Tripartite interaction among mung bean, AMF and RH--------------------------21 The specificity of two species of RH to mung bean---------------------------22 Discussion--------------------------------------------------------------------24 Plant fitness---------------------------------------------------------------25 AMF fitness-----------------------------------------------------------------26 RH fitness------------------------------------------------------------------26 Tripartite interaction among mung bean, AMF and RH--------------------------27 The specificity of two species of RH to mung bean---------------------------28 Reference---------------------------------------------------------------------30 Figures-----------------------------------------------------------------------40 Tables -----------------------------------------------------------------------47"
dc.language.isoen
dc.title在低光照環境下綠豆、根瘤菌與叢枝菌根菌三者間的共生交互作用zh_TW
dc.title"The tripartite symbiotic interaction among Vigna radiata, rhizobia, and arbuscular mycorrhizal fungi under low light environment "en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何傳愷(Hsin-Tsai Liu),林維怡(Chih-Yang Tseng),楊淑怡
dc.subject.keyword綠豆,根瘤菌,叢枝菌根菌,共生,多重共生效應,遺傳力,適應力,zh_TW
dc.subject.keywordVigna radiata,rhizobia,arbuscular mycorrhizal fungi,mutualism,multiple mutualist effects,heritability,fitness,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202103767
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1510202117543900.pdf3.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved