Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79412
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍(Sheng-Lung Huang)
dc.contributor.authorChun-Kai Wangen
dc.contributor.author王俊凱zh_TW
dc.date.accessioned2022-11-23T08:59:55Z-
dc.date.available2021-11-05
dc.date.available2022-11-23T08:59:55Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-21
dc.identifier.citation[1] F. Grover-Páez and A. B. Zavalza-Gómez, “Endothelial dysfunction and cardiovascular risk factors,” Diabetes Res. Clin. Pract., vol. 84, no. 1, pp. 1–10, Apr. 2009. [2] R. Virmani, AP. Burke, A. Farb, and FD. Kolodgie, “Pathology of the vulnerable plaque,” J. Am. Coll. Cardiol., vol. 47, no. 8 Suppl, Apr. 2006. [3] BJW. Chow et al., “Diagnostic accuracy and impact of computed tomographic coronary angiography on utilization of invasive coronary angiography,” Circ. Cardiovasc. Imaging, vol. 2, no. 1, pp. 16–23, Jan. 2009. [4] C. Page, Optical Coherence Tomography for Coronary Artery Disease : Analysis and Applications. 2018. [5] J. Li, C. Shang, Y. Rong et al.,”Review on Laser Technology in Intravascular Imaging and Treatment,” Anging and disease, 2021. [6] R. S. Feigelson, “Growth of fiber crystals,” in Crystal Growth of Electronic Materials, 1985, p. 127. [7] J. Czochralski, “A new method for the measurement of the crystallization rate of metals,” Z. Phys. Chem, vol. 92, pp. 219–221, 1918. [8] J. H. Wang, “The study of Ti:sapphire crystal fiber based wavelength swept laser,” National Taiwan University, 2018. [9] L. Wu, A. Wang, J. Wu, L. Wei, G. Zhu, and S. Ying, “Growth and laser properties of Ti:Sapphire single crystal fibres,” Electron. Lett., vol. 31, no. 14, pp. 1151–1152, Jul. 1995. [10] A. A. Anderson et al., “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett., vol. 22, no. 20, p. 1556, Oct. 1997. [11] A. Crunteanu et al., “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B Lasers Opt., vol. 75, no. 1, pp. 15–17, Jul. 2002. [12] L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5167–5168, Nov. 2004. [13] V. Apostolopoulos et al., “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti^(3+):Sapphire,” Appl. Phys. Lett., vol. 85, no. 7, pp. 1122–1124, Aug. 2004. [14] L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, J. S. Wilkinson, and A. A. Anderson, “Diffused Ti:sapphire channel-waveguide lasers,” J. Opt. Soc. Am. B, vol. 21, no. 8, p. 1452, Aug. 2004. [15] C. Grivas et al., “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett., vol. 31, no. 23, p. 3450, Dec. 2006. [16] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett., vol. 37, no. 22, p. 4630, Nov. 2012. [17] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al_2 O_3,” J. Opt. Soc. Am. B, vol. 3, no. 1, p. 125, Jan. 1986. [18] P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B, vol. 3, no. 1, p. 134, Jan. 1986. [19] D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly Tunable and Low-Threshold Cr^(4+): YAG Crystal Fiber Laser,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 1, pp. 16–23, Jan. 2015. [20] 李正中, 薄膜光學與鍍膜技術, 藝軒圖書出版社. 2002. [21] C. Palmer and E. Loewen, Diffraction grating handbook, Seventh. Newport corporation, Richardson Grating, 2014. [22] “Near-IR Ruled Reflective Diffraction Gratings.” [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8627. [23] T. T. Yang, “The study of laser-diode-pumped tunable Ti:sapphire crystal fiber laser,” National Taiwan University, 2016. [24] “Richardson Gratings - Technical Note 11.” [Online]. Available: https://www.gratinglab.com/Information/Technical_Notes/TechNote11.aspx. [25] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett., vol. 22, no. 5, p. 340, Mar. 1997. [26] S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett., vol. 28, no. 20, p. 1981, Oct. 2003. [27] M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt., vol. 10, no. 4, p. 044009, 2005. [28] I. Grulkowski et al., “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express, vol. 3, no. 11, p. 2733, Nov. 2012. [29] T. Huo et al., “Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography,” Opt. Lett., vol. 39, no. 2, p. 247, Jan. 2014. [30] S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev., vol. 114, no. 1, pp. 63–70, Apr. 1959. [31] Y. Okabe et al., “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett., vol. 48, no. 4, pp. 201–202, Feb. 2012. [32] K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa 1-xNbxO3,” Appl. Phys. Lett., vol. 89, no. 13, p. 131115, Sep. 2006. [33] NTTAT, KAC20026 KTN 1D deflector mount normal lens(KSCHR00850-03) revl. [34] C. Y. Kuo, “The study of high-speed ultra-broadband Ti:sapphire crystal fiber based wavelength swept laser,” National Taiwan University, 2020. [35] W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, 2nd ed. Springer Inc., 2015. [36] M. V. Klein and T. E. Furtak, Optics. Wiley New York, 1990. [37] B. D. Goldberg, S. M. Reza, M. Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care Optical Frequency Domain Imaging.” Opt. Express, vol. 17, no. 5, p. 3619–3629, Feb.2017 [38] T. Klein and R. Huber, “High-speed OCT light sources and systems,” Biomed. Opt. Express, vol. 8, no. 2, p. 828, Feb. 2017. [39] B. Johnson, W. Atia, M. Kuznetsov, B. D. Goldberg, P. Whitney, and D. C. Flanders, “Coherence properties of short cavity swept lasers,” Biomed. Opt. Express, vol. 8, no. 2, p. 1045, Feb. 2017. [40] W. C. Warger, M. J. Gora, C. I. Unglert, B. E. Bouma, and G. J. Tearney, Optical Coherence Tomography. 2014. [41] M. Hong, Coronary Imaging and Physiology. 2018. [42] M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications,” Biomed. Opt. Express, vol. 8, no. 5, p. 2405, 2017. [43] “Fiber Optic slip ring, Fiber-Electric slip ring, Fiber Optic rotary joint - Senring.” [Online]. Available: https://www.senring.com/fiber-optic-rotary-joints/?gclid=Cj0KCQiA6Or_BRC_ARIsAPzuer-Rz5f5K9SJMqZELe_-NrIP8nrLOJksOHkKS3pzdRObyoSIA-XV55waAp7eEALw_wcB. [44] J. W. Snow, “An Overview of Fibre Optic Rotary Joint Technology and Recent Advances,” IFAC Proc. Vol., vol. 31, no. 33, pp. 77–81, Oct. 1998. [45] “FORJ: High-speed fiber rotary joints.” [Online]. Available: http://www.princetel.com/forj_mjp.asp. [46] “X-LRQ150AP-DE51 Specifications - Zaber.” [Online]. Available: https://www.zaber.com/products/linear-stages/X-LRQ-DE/details/X-LRQ150AP-DE51. [47] “吉祥自動化股份有限公司-氣立可氣動設備.” [Online]. Available: http://airbank.com.tw/. [48] “Gradient Index Lens.” [Online]. Available: https://spie.org/publications/tt48_55_gradient_index_lens?SSO=1. [49] W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens–based optical coherence tomography imaging probes,” J. Biomed. Opt., vol. 15, no. 6, p. 066027, 2010. [50] P. Features, “Dragonfly TM Duo,” pp. 0–1. [51] “Thorlabs - INT-MZI-850 850 nm Mach-Zehnder Interferometer Clock Box.” [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=INT-MZI-850. [52] “我需要更多的頻寬嗎? | Keysight.” [Online]. Available: https://www.keysight.com/main/editorial.jspx?ckey=630517 id=630517 nid=-33863.536905609 lc=cht cc=TW. [53] W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 45 GVoxels per second,” Opt. Express, vol. 18, no. 14, p. 14685, 2010. [54] “ATS9371 – 12 bit, 1 GS/s - AlazarTech PCI Digitizers. PC Oscilloscope PC Scope Card and Systems.” [Online]. Available: https://www.alazartech.com/en/product/ats9371/4/. [55] “Thorlabs - PDA36A Si Switchable Gain Detector, 350-1100 nm, 10 MHz BW, 13 mm2, 8-32 Taps.” [Online]. Available: https://www.thorlabs.com/thorProduct.cfm?partNumber=PDA36A. [56] “Thorlabs - PDB425A-AC Fixed Gain Balanced Amp. Photodetector, 75 MHz, Si, 320-1000 nm, AC Coupled.” [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=PDB425A-AC. [57] “Superlum | Products | Broadsweepers | OEM.” [Online]. Available: https://www.superlumdiodes.com/broadsweeper-oem.htm. [58] “Blood Vessels pptx - D.Alaa - Muhadharaty.” [Online]. Available: https://www.muhadharaty.com/lecture/25734/D-Alaa/Blood-Vessels-pptx.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79412-
dc.description.abstract摻鈦藍寶石具有寬廣的放射頻譜,其螢光頻譜之半高寬可達180nm,對光學同調斷層掃描術(optical coherence tomography; OCT)而言,寬廣頻譜的輸出光源,可以獲得較高的縱向解析度;除此之外,摻鈦藍寶石之螢光中心波長為760nm,該波段對於組織散射損耗及水的吸收皆較小,此波段稱為診療視窗。然而摻鈦藍寶石本身因其短螢光生命週期和低吸收截面積,難達到低閥值的輸出,而本實驗室使用雷射加熱基座長晶法生長出纖心直徑為16μm且衰減係數僅為0.017cm^(-1)的玻璃纖衣波導結構,可建構出高效率,低雷射閥值的雷射輸出。 血管內之掃頻式光學同調斷層掃描術(intravascular swept-source OCT; IV-SSOCT)目前已被廣泛應用在醫界,透過非侵入式的掃描獲得血管的三維影像,如血管各層結構的厚度以及脂肪的堆積,可以幫助醫生對疾病做精確的判斷。 在本研究當中,以本實驗室研發之掃頻式摻鈦藍寶石晶體光纖雷射作為光源,最高掃描頻率可達100kHz,在雷射波長調整至782nm時,有最寬可調輸出頻寬達190.86nm,然而在對輸出頻譜進行分析後,本實驗以12kHz之掃描頻率進行OCT系統實驗,此外還以其他的掃頻雷射光源(BS-790-1-OEM)來進行比較與實驗,最後搭配OCT系統中光學、電子元件的審慎挑選,嘗試開發出較高縱向解析度(<5μm)的IV-SSOCT。 完成系統架設後,本實驗對不同的非生物以及生物檢體樣本進行掃描與形貌的分析,除了單一反射面的平面鏡樣本,還有可穿透的紙捲樣本,可量測得出紙捲厚度為150.4μm,最後是大鼠主動脈檢體影像,搭配H E染色的切片影像,可以大致了解血管的形貌以及厚度約為200μm,但是由於解析度以及光源強度不足導致內部的結構目前並不清晰。 未來,若能提高雷射功率與系統的可視深度,以及開發出針對中心波長780nm的可旋式掃描探頭,可期待獲得更清晰的三維影像。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:59:55Z (GMT). No. of bitstreams: 1
U0001-1910202117222200.pdf: 7289191 bytes, checksum: 31ddf74d71e6e66f48b4260eca068891 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 I 中文摘要 II ABSTRACT III 目錄 V 圖目錄 VII 表目錄 XII 第1章 緒論與研究動機 1 第2章 掃頻式摻鈦藍寶石晶體光纖雷射 2 2.1 晶體光纖製作流程與光學特性 2 2.2 晶體光纖雷射製備與相關元件 10 2.2.1 光學薄膜之製備 10 2.2.2 波長可調元件 15 2.2.3 光偏折器 16 2.3 掃頻式摻鈦藍寶石晶體光纖雷射特性與分析 21 第3章 光學同調斷層掃描術 27 3.1 光學同調斷層掃描術之基本理論 27 3.2 掃頻式光學同調斷層掃描術之基本理論 33 3.2.1 掃頻速率 35 3.2.2 訊噪比 37 3.2.3 縱向解析度 39 3.2.4 靈敏度滑落 40 3.3 掃頻式光學同調斷層掃描術之訊號處理 42 3.3.1 干涉頻譜的重新校準 42 3.3.2 掃頻雷射的正反掃輸出與利用 45 第4章 血管內之掃頻式光學同調斷層掃描術的系統架設 47 4.1 血管內橫向掃描系統 48 4.1.1 旋轉拉回系統 50 4.1.2 可旋式掃描探頭 53 4.2 快速數位類比轉換器 59 4.3 干涉訊號分析 63 4.4 IV-SSOCT之訊號處理 75 第5章 IV-SSOCT系統的樣本影像分析 80 5.1 平面鏡樣本之影像與分析 80 5.2 非生物樣本之影像與分析 82 5.3 大鼠主動脈檢體之影像與分析 84 5.3.1 動脈簡介 84 5.3.2 實驗過程與結果 85 第6章 結論與未來展望 88 參考文獻 90 附錄一 說明LabVIEW控制之Digitizer program 96 附錄二 LabVIEW控制面板簡介 98
dc.language.isozh-TW
dc.title以掃頻式摻鈦藍寶石晶體光纖雷射為光源之血管內光學同調斷層掃描術的系統架設與分析zh_TW
dc.titleDesign and Setup of Intravascular Optical Coherence Tomography with a Ti:Sapphire Crystal Fiber Based Wavelength-swept Laseren
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高憲立(Hsin-Tsai Liu),李穎玟(Chih-Yang Tseng)
dc.subject.keyword摻鈦藍寶石,晶體光纖,掃頻式光學同調斷層掃描術,血管內成像,zh_TW
dc.subject.keywordTi:sapphire,crystal fiber,swept source optical coherence tomography,blood vessel imaging,en
dc.relation.page103
dc.identifier.doi10.6342/NTU202103890
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1910202117222200.pdf7.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved