Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 圖書資訊學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79376
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor唐牧群(Muh-Chyun Tang)
dc.contributor.authorChia-Wei Chenen
dc.contributor.author陳家薇zh_TW
dc.date.accessioned2022-11-23T08:59:12Z-
dc.date.available2021-11-03
dc.date.available2022-11-23T08:59:12Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citationAdamic, L. A., Adar, E. (2003). Friends and neighbors on the Web. Social Networks, 25(3), 211-230. https://doi.org/10.1016/S0378-8733(03)00009-1 Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3), 590-614. https://doi.org/https://doi.org/10.1016/S0378-4371(02)00736-7 Behrouzi, S., Shafaeipour Sarmoor, Z., Hajsadeghi, K., Kavousi, K. (2020). Predicting scientific research trends based on link prediction in keyword networks. Journal of Informetrics, 14(4), 101079. https://doi.org/10.1016/j.joi.2020.101079 Burris, V. (2005). Interlocking Directorates and Political Cohesion among Corporate Elites. American Journal of Sociology, 111(1), 249-283. https://doi.org/10.1086/428817 Callon, M., Courtial, J.-P., Turner, W. A., Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191-235. https://doi.org/10.1177/053901883022002003 Callon, M., Courtial, J. P., Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155-205. https://doi.org/10.1007/BF02019280 Chen, X., Chen, J., Wu, D., Xie, Y., Li, J. (2016). Mapping the Research Trends by Co-word Analysis Based on Keywords from Funded Project. Procedia Computer Science, 91, 547-555. https://doi.org/10.1016/j.procs.2016.07.140 Choudhury, N., Uddin, S. (2016). Time-aware link prediction to explore network effects on temporal knowledge evolution. Scientometrics, 108(2), 745-776. https://doi.org/10.1007/s11192-016-2003-5 Choudhury, N., Uddin, S. (2018). Evolutionary Community Mining for Link Prediction in Dynamic Networks. https://doi.org/10.1007/978-3-319-72150-7_11 Chowdhury, G. (2010). Introduction to Modern Information Retrieval. Cobo, M., López-Herrera, A. G., Herrera-Viedma, E., Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. J. Assoc. Inf. Sci. Technol., 62, 1382-1402. https://doi.org/10.1002/asi.21525 Conte, M. L., Liu, J., Schnell, S., Omary, M. B. (2017). Globalization and changing trends of biomedical research output. JCI insight, 2(12), e95206. https://doi.org/10.1172/jci.insight.95206 Cooper, W. S. (1978). A Perspective on the Measurement of Retrieval Effectiveness. Coulter, N., Monarch, I., Konda, S. L. (1998). Software engineering as seen through its research literature: a study in co-word analysis. Journal of the Association for Information Science and Technology, 49, 1206-1223. https://doi.org/10.1002/(SICI)1097-4571(1998)49:133.0.CO;2-F Ding, Y., Chowdhury, G. G., Foo, S. (2001). Bibliometric cartography of information retrieval research by using co-word analysis. Information Processing Management, 37(6), 817-842. https://doi.org/10.1016/S0306-4573(00)00051-0 Duan, Y., Guan, Q. (2021). Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model. Scientometrics, 126(5), 3749-3773. https://doi.org/10.1007/s11192-021-03901-6 Fokoue, A., Sadoghi, M., Hassanzadeh, O., Zhang, P. (2016). Predicting Drug-Drug Interactions Through Large-Scale Similarity-Based Link Prediction. https://doi.org/10.1007/978-3-319-34129-3_47 Fujisue, C., Sasaki, H., Yamano, H., Sakata, I. (2018, 19-23 Aug. 2018). Co-word Analysis to Detect Possible Combinations for Composite Materials. 2018 Portland International Conference on Management of Engineering and Technology (PICMET), Getoor, L., Diehl, C. P. (2005). Link mining: a survey. SIGKDD Explor. Newsl., 7(2), 3–12. https://doi.org/10.1145/1117454.1117456 Godley, J., Glenn, N., Sharma, A., Spence, J. (2014). Networks of trainingees: Examining the effects of attending an interdisciplinary research training camp on the careers of new obesity scholars. Journal of multidisciplinary healthcare, 7, 459-470. https://doi.org/10.2147/JMDH.S68555 Guns, R. (2009). Generalizing link prediction: Collaboration at the University of Antwerp as a case study. Proceedings of The Asist Annual Meeting - P ASIST ANNU MEET, 46, 1-15. https://doi.org/10.1002/meet.2009.1450460225 Guns, R. (2012). Missing links: Predicting interactions based on a multi-relational network structure with applications in informetrics. ProQuest Dissertations Publishing. Guns, R. (2014). Link Prediction. In (pp. 35-55). https://doi.org/10.1007/978-3-319-10377-8_2 He, Q. (1999). Knowledge Discovery Through Co-Word Analysis. Libr. Trends, 48. Huang, Z., Li, X., Chen, H.-c. (2005). Link prediction approach to collaborative filtering. https://doi.org/10.1145/1065385.1065415 Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., Morris, M. (2008). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of statistical software, 24(3), nihpa54860-nihpa54860. https://doi.org/10.18637/jss.v024.i03 Jalili, M., Orouskhani, Y., Asgari Mehrabadi, M., Alipourfard, N., Perc, M. (2017). Link prediction in multiplex online social networks. Royal Society Open Science, 4, 160863. https://doi.org/10.1098/rsos.160863 Kastrin, A., Rindflesch, T. C., Hristovski, D. (2014a). Link Prediction on the Semantic MEDLINE Network. https://doi.org/10.1007/978-3-319-11812-3_12 Kastrin, A., Rindflesch, T. C., Hristovski, D. (2014b). Link prediction in a MeSH co-occurrence network: preliminary results. Stud Health Technol Inform, 205, 579-583. https://doi.org/10.3233/978-1-61499-432-9-579 Kastrin, A., Rindflesch, T. C., Hristovski, D. (2016). Link Prediction on a Network of Co-occurring MeSH Terms: Towards Literature-based Discovery. Methods Inf Med, 55(4), 340-346. https://doi.org/10.3414/me15-01-0108 Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39-43. https://doi.org/10.1007/BF02289026 Lü, L., Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications, 390(6), 1150-1170. https://doi.org/10.1016/j.physa.2010.11.027 La Rosa, C., Parolisi, R., Bonfanti, L. (2020). Brain Structural Plasticity: From Adult Neurogenesis to Immature Neurons [Mini Review]. Frontiers in Neuroscience, 14(75). https://doi.org/10.3389/fnins.2020.00075 Lambiotte, R., Panzarasa, P. (2009). Communities, knowledge creation, and information diffusion. Journal of Informetrics, 3(3), 180-190. https://doi.org/10.1016/j.joi.2009.03.007 Leydesdorff, L., Nerghes, A. (2015). Co-word Maps and Topic Modeling: A Comparison Using Small and Medium-Sized Corpora (N < 1,000). Journal of the Association for Information Science and Technology, 68. https://doi.org/10.1002/asi.23740 Leydesdorff, L., Rafols, I. (2009). A Global Map of Science Based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60. https://doi.org/10.1002/asi.20967 Liben-Nowell, D., Kleinberg, J. (2003). The link prediction problem for social networks Proceedings of the twelfth international conference on Information and knowledge management, New Orleans, LA, USA. https://doi.org/10.1145/956863.956972 Matloff, N. (2016). A User's Guide to Network Analysis in R. Journal of statistical software, 72. https://doi.org/10.18637/jss.v072.b03 May M. (2020). 2021: research and medical trends in a post-pandemic world. Nature medicine, 26(12), 1808–1809. https://doi.org/10.1038/s41591-020-01146-z Morris, S., Martens, B. (2008). Mapping research specialties. ARIST, 42, 213-295. https://doi.org/10.1002/aris.2008.1440420113 Newman, M. (2001). Clustering and preferential attachment in growing networks. . Physical review. E, Statistical, nonlinear, and soft matter physics, 64, 025102. https://doi.org/10.1103/PhysRevE.64.025102 Rattigan, M., Jensen, D. (2005). The case for anomalous link discovery. SIGKDD Explorations, 7. https://doi.org/10.1145/1117454.1117460 Rijsbergen, C. J. V. (1979). Information Retrieval (2nd ed.). London: Butterworths. Salton, G., McGill, M. J. (1983). Introduction to Modern Information Retrieval. McGraw-Hill. https://books.google.com.tw/books?id=7f5TAAAAMAAJ Sanz-Cruzado, J., Pepa, S. M., Castells, P. (2018). Structural Novelty and Diversity in Link Prediction. Companion Proceedings of the The Web Conference 2018. https://doi.org/10.1145/3184558.3191576 Shammas, M. A. (2011). Telomeres, lifestyle, cancer, and aging. Current opinion in clinical nutrition and metabolic care, 14(1), 28-34. https://doi.org/10.1097/MCO.0b013e32834121b1 Shibata, N., Kajikawa, Y., Sakata, I. (2012). Link Prediction in Citation Networks. JASIST, 63, 78-85. https://doi.org/10.1002/asi.21664 Small, H. (2009). Critical thresholds for co-citation clusters and emergence of the giant component. Journal of Informetrics, 3(4), 332-340. https://doi.org/10.1016/j.joi.2009.05.001 Smalheiser, N. (2012). Literature-Based Discovery: Beyond the ABCs. Journal of the American Society for Information Science and Technology, 63, 218-224. https://doi.org/10.1002/asi.21599 Spertus, E., Sahami, M., Buyukkokten, O. (2005). Evaluating similarity measures: A large-scale study in the Orkut social network. https://doi.org/10.1145/1081870.1081956 Sulaimany, S., Khansari, M. (2018). Link prediction potentials for biological networks. International Journal of Data Mining and Bioinformatics, 20, 161. https://doi.org/10.1504/IJDMB.2018.093684 Swanson, D. R. (1986). Undiscovered Public Knowledge. The Library Quarterly: Information, Community, Policy, 56(2), 103-118. http://www.jstor.org/stable/4307965 Tylenda, T., Angelova, R., Bedathur, S. (2009). Towards time-aware link prediction in evolving social networks Proceedings of the 3rd Workshop on Social Network Mining and Analysis, Paris, France. https://doi.org/10.1145/1731011.1731020 von Bernhardi, R., Bernhardi, L. E., Eugenín, J. (2017). What Is Neural Plasticity? Adv Exp Med Biol, 1015, 1-15. https://doi.org/10.1007/978-3-319-62817-2_1 Wang, F., Gao, M., Liu, J., Fan, W. (2018). The Spatial Network Structure of China’s Regional Carbon Emissions and Its Network Effect. Energies, 11(10). https://doi.org/10.3390/en11102706 Wasserman, S., Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511815478 Watts, D. J., Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. https://doi.org/10.1038/30918 Wilson, P. (1978). Some Fundamental Concepts of Information Retrieval. Drexel Library Quarterly, 14(2), 10-24. Yan, E., Guns, R. (2014). Predicting and recommending collaborations: An author-, institution-, and country-level analysis. Journal of Informetrics, 8(2), 295-309. https://doi.org/10.1016/j.joi.2014.01.008 Yu, Q., Long, C., Lv, Y., Shao, H., He, P., Duan, Z. (2014). Predicting co-author relationship in medical co-authorship networks. PloS one, 9(7), e101214-e101214. https://doi.org/10.1371/journal.pone.0101214 Zhou, T., Lü, L., Zhang, Y.-C. (2009). Predicting Missing Links via Local Information. The European Physical Journal B - Condensed Matter and Complex Systems, 71, 623-630. https://doi.org/10.1140/epjb/e2009-00335-8 Zvereva, M. I., Shcherbakova, D. M., Dontsova, O. A. (2010). Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc), 75(13), 1563-1583. https://doi.org/10.1134/s0006297910130055
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79376-
dc.description.abstract連結預測能透過演算法針對網絡的特定特性來預測未來連結,在資訊科學領域中,若運用在學術合作網絡可以預測未來可能合作的作者,於共字網絡中能預測字詞間可能產生的新連結,用於發掘特定學科領域的變化以及新興的研究領域。目前既有的連結預測表現評估方法為二元分類,但是當網絡的連結具有權重時,二元分類會將檢驗的預測結果轉為二元的形式,忽略連結權重的數值高低,因此本研究提出以網絡統計檢定中的Quadratic Assignment Procedure(QAP)線性迴歸分析作為新的評估典範。 本研究選擇探討領域為生物醫學領域中的三個主題,分別為發育生物學、神經可塑性、端粒,從PubMed資料庫蒐集文獻形成由關鍵字組成的共字網絡,節點為關鍵字,連結是成對關鍵字出現在同一篇文獻的次數。將2015年至2017年形成的共字網絡視為訓練網絡,而2018年2020年的驗證網絡是為了檢驗預測表現的真實網絡。本研究選擇區域演算法中的Adamic/Adar、Common Neighbours、Cosine Similarity以及Jaccard和全域演算法可以設定參數的Katz,針對訓練網絡進行訓練,預測在2018年2020年間可能產生的連結,並使用二元分類和QAP評估預測結果,比較五種演算法的預測表現。 研究結果發現在三個主題中,二元分類與QAP的結果顯示全域演算法的表現優於區域演算法,Katz預測能力最為優異,最後則是Jaccard。雖然整體而言二元分類和QAP的結果並無莫大的差異,但是QAP對於連結權重數值的敏感度高,更精準地將預測結果反應在評估的數值上,此外QAP即使在全為真陽性連結的檢驗中,仍然能判別不同模型於預測連結權重的表現,相較於二元分類,QAP更具有區辨不同模型預測表現的能力。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:59:12Z (GMT). No. of bitstreams: 1
U0001-2510202114404200.pdf: 4738795 bytes, checksum: 51414a530439ae6a2dca1888aeda715d (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents論文口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 圖目次 viii 表目次 x 名詞定義表 xii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 名詞解釋 5 第二章 文獻回顧 8 第一節 連結預測方法與應用研究 8 第二節 連結預測演算法 12 第三節 連結預測效能評估的新舊模型 16 第四節 連結預測文獻統整 21 第三章 研究設計與實施 23 第一節 共字網絡形成 24 第二節 連結預測效能評估方法 34 第四章 研究結果 38 第一節 訓練網絡與驗證網絡 38 第二節 預測網絡 43 第三節 二元分類評估結果 47 第四節 QAP線性迴歸分析評估結果 54 第五章 結論 71 第一節 綜合比較評估結果 71 第二節 QAP線性迴歸分析的應用與貢獻 75 第三節 研究限制與建議 76 參考文獻 79 附錄 84
dc.language.isozh-TW
dc.title建立連結預測的新評估模型—以生物醫學領域的共字網絡為例zh_TW
dc.titleToward a New Evaluation Model for Link Prediction: A Case Study of Co-word Network in Biomedical Scienceen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林頌堅(Hsin-Tsai Liu),吳怡瑾(Chih-Yang Tseng)
dc.subject.keyword連結預測,連結預測評估方式,共字網絡,社會網絡分析,網絡迴歸分析,二次指派程序,zh_TW
dc.subject.keywordLink prediction,Link prediction evaluation,Co-word network,Social network analysis,Regression of network,Quadratic assignment procedure,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202104143
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-27
dc.contributor.author-college文學院zh_TW
dc.contributor.author-dept圖書資訊學研究所zh_TW
顯示於系所單位:圖書資訊學系

文件中的檔案:
檔案 大小格式 
U0001-2510202114404200.pdf4.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved