請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79370完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂宥蓉(Yu-Jung Lu) | |
| dc.contributor.author | Jung-Chan Lee | en |
| dc.contributor.author | 李榮展 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:59:04Z | - |
| dc.date.available | 2026-10-28 | |
| dc.date.available | 2022-11-23T08:59:04Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-29 | |
| dc.identifier.citation | 1. K.S. Novoselov et al., ''Electric Field Effect in Atomically Thin Carbon Films,'' Science 306(5696), 666 (2004). 2. K.F. Mak et al., ''Atomically Thin MoS2: A New Direct-Gap Semiconductor,'' Physical Review Letters 105(13), 136805 (2010). 3. B. Radisavljevic et al., ''Single-layer MoS2 transistors,'' Nature Nanotechnology 6(3), 147 (2011). 4. A.K. Geim et al., ''Van der Waals heterostructures,'' Nature 499(7459), 419 (2013). 5. P. Rivera et al., ''Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,'' Nature Communications 6(1), 6242 (2015). 6. M. Amani et al., ''Near-unity photoluminescence quantum yield in MoS lt;sub gt;2 lt;/sub gt,'' Science 350(6264), 1065 (2015). 7. F. Xia et al., ''Two-dimensional material nanophotonics,'' Nature Photonics 8(12), 899 (2014). 8. J.Y. Lee et al., ''Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures,'' Nanomaterials 6(11), (2016). 9. J. Liu et al., ''Strong terahertz conductance of graphene nanoribbons under a magnetic field,'' Applied Physics Letters 93(4), 041106 (2008). 10. Y. Zhang et al., ''Direct observation of a widely tunable bandgap in bilayer graphene,'' Nature 459(7248), 820 (2009). 11. I. Song et al., ''Synthesis and properties of molybdenum disulphide: from bulk to atomic layers,'' RSC Advances 5(10), 7495 (2015). 12. A. Rodin, Two-dimensional semiconductor transition metal dichalcogenides: basic properties, in 2D Semiconductor Materials and Devices, D. Chi, K.E.J. Goh, and A.T.S. Wee, Editors. 2020, Elsevier. p. 1. 13. Q.H. Wang et al., ''Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,'' Nature Nanotechnology 7(11), 699 (2012). 14. H.R. Gutiérrez et al., ''Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers,'' Nano Letters 13(8), 3447 (2013). 15. M. Chhowalla et al., ''The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,'' Nature Chemistry 5(4), 263 (2013). 16. A. Kuc et al., ''The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields,'' Chemical Society Reviews 44(9), 2603 (2015). 17. H. Zeng et al., ''Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,'' Scientific Reports 3(1), 1608 (2013). 18. R. Ganatra et al., ''Few-layer MoS2: a promising layered semiconductor,'' 8 5(4074 (2014). 19. S. Mouri et al., ''Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping,'' Nano Letters 13(12), 5944 (2013). 20. S. Tongay et al., ''Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,'' Nano Letters 12(11), 5576 (2012). 21. D. Xiao et al., ''Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,'' Physical Review Letters 108(19), 196802 (2012). 22. G.-B. Liu et al., ''Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,'' Chemical Society Reviews 44(9), 2643 (2015). 23. K.F. Mak et al., ''Control of valley polarization in monolayer MoS2 by optical helicity,'' Nature Nanotechnology 7(8), 494 (2012). 24. P. Gao et al., ''Organohalide lead perovskites for photovoltaic applications,'' Energy Environmental Science 7(8), 2448 (2014). 25. T. Umebayashi et al., ''Electronic structures of lead iodide based low-dimensional crystals,'' Physical Review B 67(15), 155405 (2003). 26. F. Brivio et al., ''Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles,'' APL Materials 1(4), 042111 (2013). 27. F. Xu et al., ''Mixed cation hybrid lead halide perovskites with enhanced performance and stability,'' Journal of Materials Chemistry A 5(23), 11450 (2017). 28. Q. Chen et al., ''Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications,'' Nano Today 10(3), 355 (2015). 29. J. Shamsi et al., ''N-Methylformamide as a Source of Methylammonium Ions in the Synthesis of Lead Halide Perovskite Nanocrystals and Bulk Crystals,'' ACS Energy Letters 1(5), 1042 (2016). 30. I. Levchuk et al., ''Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX3 (X = Cl, Br, I) Colloidal Nanocrystals,'' Nano Letters 17(5), 2765 (2017). 31. D. Yang et al., ''Cation doping and strain engineering of CsPbBr3-based perovskite light emitting diodes,'' Journal of Materials Chemistry C 8(20), 6640 (2020). 32. S.M. Lee et al., ''Temperature-Dependent Photoluminescence of Cesium Lead Halide Perovskite Quantum Dots: Splitting of the Photoluminescence Peaks of CsPbBr3 and CsPb(Br/I)3 Quantum Dots at Low Temperature,'' The Journal of Physical Chemistry C 121(46), 26054 (2017). 33. J.A. Steele et al., ''Thermal unequilibrium of strained black CsPbI3 thin films,'' Science 365(6454), 679 (2019). 34. L. Protesescu et al., ''Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,'' Nano Letters 15(6), 3692 (2015). 35. O. Karni et al., ''Infrared Interlayer Exciton Emission in MoS2/WSe2 Heterostructures,'' Physical Review Letters 123(24), 247402 (2019). 36. A.O.A. Tanoh et al., ''Directed Energy Transfer from Monolayer WS2 to Near-Infrared Emitting PbS–CdS Quantum Dots,'' ACS Nano 14(11), 15374 (2020). 37. A. Boulesbaa et al., ''Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures,'' Journal of the American Chemical Society 138(44), 14713 (2016). 38. F. Prins et al., ''Reduced Dielectric Screening and Enhanced Energy Transfer in Single- and Few-Layer MoS2,'' Nano Letters 14(11), 6087 (2014). 39. D. Prasai et al., ''Electrical Control of near-Field Energy Transfer between Quantum Dots and Two-Dimensional Semiconductors,'' Nano Letters 15(7), 4374 (2015). 40. M. Li et al., ''Light-Induced Interfacial Phenomena in Atomically Thin 2D van der Waals Material Hybrids and Heterojunctions,'' ACS Energy Letters 4(9), 2323 (2019). 41. Q. Zhang et al., ''Excitonic Energy Transfer in Heterostructures of Quasi-2D Perovskite and Monolayer WS2,'' ACS Nano 14(9), 11482 (2020). 42. D. Kozawa et al., ''Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,'' Nano Letters 16(7), 4087 (2016). 43. D. Jariwala et al., ''Mixed-dimensional van der Waals heterostructures,'' Nature Materials 16(2), 170 (2017). 44. H. Liu et al., ''Controllable Interlayer Charge and Energy Transfer in Perovskite Quantum Dots/ Transition Metal Dichalcogenide Heterostructures,'' Advanced Materials Interfaces 6(23), 1901263 (2019). 45. J. Huang et al., ''Tailored Emission Spectrum of 2D Semiconductors Using Plasmonic Nanocavities,'' ACS Photonics 5(2), 552 (2018). 46. M. Amani et al., ''Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,'' Nano Letters 16(4), 2786 (2016). 47. G. Pagona et al., ''Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid,'' Chemical Communications 51(65), 12950 (2015). 48. F. Hu et al., ''Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters,'' ACS Nano 9(12), 12410 (2015). 49. J.J. Sakurai et al., Modern Quantum Mechanics. 2 ed. 2017, Cambridge: Cambridge University Press. 50. M. Fox, Optical properties of solids. 2002, American Association of Physics Teachers. 51. S.B. Nam et al., ''Free-exciton energy spectrum in GaAs,'' Physical Review B 13(2), 761 (1976). 52. M. Leroux et al., ''Temperature quenching of photoluminescence intensities in undoped and doped GaN,'' Journal of Applied Physics 86(7), 3721 (1999). 53. S. Rudin et al., ''Temperature-dependent exciton linewidths in semiconductors,'' Physical Review B 42(17), 11218 (1990). 54. R. Saran et al., ''Giant Bandgap Renormalization and Exciton–Phonon Scattering in Perovskite Nanocrystals,'' Advanced Optical Materials 5(17), 1700231 (2017). 55. R. Moglich et al., Z. phys. 34(472 (1942). 56. T. Muto et al., ''Theory of the Temperature Effect of Electronic Energy Bands in Crystals,'' Progress of Theoretical Physics 5(5), 833 (1950). 57. Y.P. Varshni, ''Temperature dependence of the energy gap in semiconductors,'' Physica 34(1), 149 (1967). 58. K.P. O’Donnell et al., ''Temperature dependence of semiconductor band gaps,'' Applied Physics Letters 58(25), 2924 (1991). 59. F. Cadiz et al., ''Excitonic Linewidth Approaching the Homogeneous Limit in MoS2-Based van der Waals Heterostructures,'' Physical Review X 7(2), 021026 (2017). 60. J. Krustok et al., ''Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers,'' AIP Advances 7(6), 065005 (2017). 61. J.S. Ross et al., ''Electrical control of neutral and charged excitons in a monolayer semiconductor,'' Nature Communications 4(1), 1474 (2013). 62. A. Arora et al., ''Excitonic resonances in thin films of WSe2: from monolayer to bulk material,'' Nanoscale 7(23), 10421 (2015). 63. M. Cardona, ''Electron–phonon interaction in tetrahedral semiconductors,'' Solid State Communications 133(1), 3 (2005). 64. A. Göbel et al., ''Effects of the isotopic composition on the fundamental gap of CuCl,'' Physical Review B 57(24), 15183 (1998). 65. H. Fan, ''Temperature dependence of the energy gap in semiconductors,'' Physical Review 82(6), 900 (1951). 66. E. Antončík, ''On the theory of temperature shift of the absorption curve in non-polar crystals,'' Cechoslovackij fiziceskij zurnal 5(4), 449 (1955). 67. C. Keffer et al., ''PbTe Debye-Waller Factors and Band-Gap Temperature Dependence,'' Physical Review Letters 21(25), 1676 (1968). 68. C. Yu et al., ''Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3,'' Journal of Applied Physics 110(6), 063526 (2011). 69. J.R. Lakowicz, Principles of fluorescence spectroscopy. 2013: Springer science business media. 70. https://www.attocube.com/application/files/7115/5360/6799/attoDRY.pdf. 71. https://www.picoquant.com/images/uploads/downloads/7304-photon_counting_brochure.pdf 72. A.A. Mitioglu et al., ''Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,'' Physical Review B 89(24), 245442 (2014). 73. Q. Shuai et al. Identifying the number of WS2 layers via Raman and photoluminescence spectrum. in Proceedings of the 2017 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2017). 2017. Atlantis Press. 74. W. Shi et al., ''Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,'' 2D Materials 3(2), 025016 (2016). 75. A.A. Mitioglu et al., ''Optical manipulation of the exciton charge state in single-layer tungsten disulfide,'' Physical Review B 88(24), 245403 (2013). 76. V. Huard et al., ''Bound States in Optical Absorption of Semiconductor Quantum Wells Containing a Two-Dimensional Electron Gas,'' Physical Review Letters 84(1), 187 (2000). 77. K.F. Mak et al., ''Tightly bound trions in monolayer MoS2,'' Nature Materials 12(3), 207 (2013). 78. N. Peimyoo et al., ''Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Monolayer WS2,'' ACS Nano 8(11), 11320 (2014). 79. Y. Tao et al., ''Bright monolayer tungsten disulfide via exciton and trion chemical modulations,'' Nanoscale 10(14), 6294 (2018). 80. H. Shi et al., ''Exciton Dynamics in Suspended Monolayer and Few-Layer MoS2 2D Crystals,'' ACS Nano 7(2), 1072 (2013). 81. K. Wei et al., ''Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots,'' Optics Letters 41(16), 3821 (2016). 82. L. Sun et al., ''Vacuum level dependent photoluminescence in chemical vapor deposition-grown monolayer MoS2,'' Scientific Reports 7(1), 16714 (2017). 83. H. Li et al., ''Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,'' Nanoscale 10(4), 1650 (2018). 84. C. Liu et al., ''Efficiency and stability enhancement of perovskite solar cells by introducing CsPbI3 quantum dots as an interface engineering layer,'' NPG Asia Materials 10(6), 552 (2018). 85. I. Paradisanos et al., ''Room temperature observation of biexcitons in exfoliated WS2 monolayers,'' Applied Physics Letters 110(19), 193102 (2017). 86. G. Plechinger et al., ''Identification of excitons, trions and biexcitons in single-layer WS2,'' physica status solidi (RRL) – Rapid Research Letters 9(8), 457 (2015). 87. Y. Zhou et al., ''Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,'' Nature Nanotechnology 12(9), 856 (2017). 88. A. Arora et al., ''Dark trions govern the temperature-dependent optical absorption and emission of doped atomically thin semiconductors,'' Physical Review B 101(24), 241413 (2020). 89. A. Raja et al., ''Enhancement of Exciton–Phonon Scattering from Monolayer to Bilayer WS2,'' Nano Letters 18(10), 6135 (2018). 90. K. Wei et al., ''Large range modification of exciton species in monolayer WS2,'' Applied Optics 55(23), 6251 (2016). 91. W. Zhihai et al., ''Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs,'' Journal of Materials Science 54(9), 6917 (2019). 92. K. Wei et al., ''Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr 3 quantum dots,'' Optics letters 41(16), 3821 (2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79370 | - |
| dc.description.abstract | 層狀過渡金屬二硫族化物(TMDC) 材料是近年來發現具有優異光電性質的半導體之一,當被剝離至單層時,其能帶結構會由不直接能隙轉變為直接能隙,使得發光效率明顯提升。同時,由於較弱的介電屏蔽效應(dielectric screening),導致電子與電洞具有較強的庫侖作用力,使得單層TMDC材料擁有很大的激子束縛能,因此能在室溫中穩定發光。但不幸的是,它的螢光量子產率(PLQY)很低,使其不易用來作為發光元件的實際應用。因此本論文嘗試藉由形成異質結構,利用兩材料的接面會因能帶結構不同,而需能帶對齊,藉此調整載子傳遞機制,進而改善二維材料之發光效率。 在這項工作中,我們在單層TMDC 材料(WS2)上旋塗鈣鈦礦量子點(CsPbI3、CsPbBr3),以形成垂直堆疊的異質結構。由於全無機鹵化鉛鈣鈦礦膠體量子點具有高吸收截面和極高的螢光量子產率(PLQY),因此可以透過載子轉移的機制來增強TMDC的光致發光強度。為了比較不同的能帶對齊形式,我們製備了 CsPbI3 / WS2 和 CsPbBr3 / WS2的異質結構,分別對應於電荷轉移和能量轉移機制。為了研究它們的載流子轉移機制,我們使用光致發光光譜和時間解析光譜技術來分析穩態激子的特性、隨溫度變化的能隙改變、激子與聲子間的相互作用,以及生命期等等。有趣的是,我們發現這兩種異質結構皆可在低溫下增強 WS2的光致發光強度。透過異質結構的形成,我們發現CsPbI3 / WS2在低溫與高溫的發光強度上,可以增強超過100倍,CsPbBr3 / WS2亦有增強的情形,符合我們使用高吸收材料來改善另一種發光材料發光效率的目的,期望未來能應用在光電元件、感測器、發光元件的設計上。此外,在研究的過程中,我們亦使用激子間轉換的三能階模型來解釋壓力對單層WS2 發光特性的改變,以利我們對於單層TMDC材料有更深入的了解。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:59:04Z (GMT). No. of bitstreams: 1 U0001-2510202117083500.pdf: 9672994 bytes, checksum: e209c7ca5165dc9f07c9df5b2957322a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員審定書 I 誌謝 II 中文摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XIII 第一章、緒論 1 1.1 二維材料的介紹 1 1.2 過渡金屬二硫族化物 (Transition metal dichalcogenides, TMDC) 5 1.2.1 過渡金屬二硫族化物之晶格結構 6 1.2.2 Ⅵ族過渡金屬二硫族化物之能帶結構 8 1.2.3 單層Ⅵ族過渡金屬二硫族化物之光學特性 12 1.3 鈣鈦礦 (Perovskite) 材料介紹 15 1.4 垂直堆疊的異質結構與文獻回顧 21 1.4.1 同維度結合的垂直堆疊異質結構 23 1.4.2 不同維度結合的垂直堆疊異質結構 28 第二章、實驗原理 33 2.1 光致發光 (Photoluminescence, PL) 33 2.1.1帶間躍遷的量子力學理論 33 2.1.2固態半導體材料發光機制 40 2.2 溫度對發光性質的影響 43 2.2.1 溫度對螢光光強的影響 43 2.2.2 溫度與譜線增寬的關係 44 2.2.3 溫度與能隙大小的關係 46 2.3 半導體異質結構的載子動力學 51 第三章、實驗方法與量測系統 53 3.1 樣品製備 53 3.1.1 樣品定位與製作流程 53 3.1.2 過渡金屬二硫族化物材料製備 54 3.1.3 異質結構的形成 55 3.2 光致發光 (Photoluminescence) 共焦掃描 (confocal scanning)量測系統 56 3.3 時間解析螢光光譜系統 (Time-resolved photoluminescence, TRPL) 61 第四章、二硫化鎢 (WS2) 材料特性分析 65 4.1 拉曼光譜結果分析 65 4.2 壓力變化對二硫化鎢 (WS2) 螢光光譜的影響 67 第五章、鈣鈦礦 (CsPbI3) / 二硫化鎢 (WS2) 垂直堆疊結果分析 76 5.1 鈣鈦礦 (CsPbI3) 量子點基本光學特性分析 77 5.1.1 不同激發功率對鈣鈦礦 (CsPbI3) 量子點之影響 78 5.1.2 溫度對鈣鈦礦 (CsPbI3) 量子點光學性質之影響 80 5.1.3 鈣鈦礦 (CsPbI3) 量子點之時間解析光譜 86 5.2 單層二硫化鎢 (WS2) 基本光學特性分析 90 5.2.1 不同激發功率對單層二硫化鎢 (WS2) 之影響 90 5.2.2 溫度對單層二硫化鎢 (WS2) 光學性質之影響 92 5.2.3 單層二硫化鎢 (WS2) 之時間解析光譜 99 5.3 鈣鈦礦 (CsPbI3) / 二硫化鎢 (WS2) 異質結構結果分析 100 5.3.1 CsPbI3量子點與單層WS2異質結構之光譜分析 101 5.3.2 CsPbI3量子點與單層WS2異質結構之時間解析光譜分析 109 第六章、鈣鈦礦 (CsPbBr3) / 二硫化鎢 (WS2) 垂直堆疊結果分析 111 6.1 鈣鈦礦 (CsPbBr3) 量子點基本光學特性分析 112 6.1.1 不同激發功率對鈣鈦礦 (CsPbBr3) 之影響 112 6.1.2 溫度對鈣鈦礦 (CsPbBr3) 量子點光學性質之影響 114 6.1.3 鈣鈦礦 (CsPbBr3) 量子點之時間解析光譜 120 6.2 單層二硫化鎢 (WS2) 基本光學特性分析 124 6.3 鈣鈦礦 (CsPbBr3) 量子點與單層二硫化鎢 (WS2) 異質結構結果分析 126 第七章、結論與未來展望 133 第八章、參考資料 134 " | |
| dc.language.iso | zh-TW | |
| dc.title | 單層二維材料與量子點異質結構之載子動力學研究 | zh_TW |
| dc.title | Probing the carrier transfer dynamics in low dimensional heterostructure: monolayer 2D materials and quantum dots | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳永芳(Hsin-Tsai Liu),安惠榮(Chih-Yang Tseng),陳馨怡 | |
| dc.subject.keyword | 鈣鈦礦量子點,過渡金屬二硫族化物,異質結構,變溫螢光光譜,光致發光光譜,時間解析螢光光譜,載子轉移,電荷轉移,能量轉移, | zh_TW |
| dc.subject.keyword | perovskite quantum dots,TMDC,heterostructure,temperature-dependent,photoluminescence (PL),time-resolved photoluminescence (TRPL),carrier transfer,charge transfer,energy transfer, | en |
| dc.relation.page | 139 | |
| dc.identifier.doi | 10.6342/NTU202104160 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-10-28 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2510202117083500.pdf 此日期後於網路公開 2026-10-28 | 9.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
