請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79356完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫(Lon Wang) | |
| dc.contributor.author | Kai-Ju Lin | en |
| dc.contributor.author | 林楷儒 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:58:46Z | - |
| dc.date.available | 2021-11-04 | |
| dc.date.available | 2022-11-23T08:58:46Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | [1] Butt, M. A., S. N. Khonina, and N. L. Kazanskiy. 'Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications.' Journal of Modern Optics 66.11 (2019): 1172-1178. [2] Luan, Enxiao, et al. 'Silicon photonic biosensors using label-free detection.' Sensors 18.10 (2018): 3519. [3] Almeida, Vilson R., et al. 'Guiding and confining light in void nanostructure.' Optics letters 29.11 (2004): 1209-1211. [4] Sharma, Tarun, et al. 'Coupling performance enhancement using SOI grating coupler design.' Optics Communications 427 (2018): 452-456. [5] Sazio, Pier JA, et al. 'Microstructured optical fibers as high-pressure microfluidic reactors.' Science 311.5767 (2006): 1583-1586. [6] Scott, Brian L., et al. 'Fabrication of silicon optical fiber.' Optical Engineering 48.10 (2009): 100501. [7] Healy, N., et al. 'Tapered silicon optical fibers.' Optics express 18.8 (2010): 7596-7601. [8] Suhailin, Fariza H., et al. 'Tapered polysilicon core fibers for nonlinear photonics.' Optics Letters 41.7 (2016): 1360-1363. [9] Harun, Sulaiman Wadi, et al. 'Theoretical analysis and fabrication of tapered fiber.' Optik 124.6 (2013): 538-543. [10] Chiu, Ming-Hung, Shao-Nan Hsu, and Hsiharng Yang. 'D-type fiber optic sensor used as a refractometer based on total-internal reflection heterodyne interferometry.' Sensors and Actuators B: Chemical 101.3 (2004): 322-327. [11] South, I. T. R. I. 'Novel D-type fiber optic localized plasmon resonance sensor realized by femtosecond laser engraving.' J. Laser Micro/Nanoeng 5 (2010). [12] Chiu, Ming-Hung, Shinn-Fwu Wang, and Rong-Seng Chang. 'D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry.' Optics letters 30.3 (2005): 233-235. [13] Wang, Pengfei, et al. 'High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference.' Optics letters 36.12 (2011): 2233-2235. [14] Chen, Chien-Hsing, et al. 'A multi-D-shaped optical fiber for refractive index sensing.' Sensors 10.5 (2010): 4794-4804. [15] Vaiano, Patrizio, et al. 'Lab on Fiber Technology for biological sensing applications.' Laser Photonics Reviews 10.6 (2016): 922-961. Zhang, Y., et al. 'Surface-enhanced Raman scattering sensor based on D-shaped fiber.' Applied Physics Letters 87.12 (2005): 123105. [16] Bai, Zhiyong, et al. 'Influence of Side-Polished Fiber Surface Topography on Surface Plasmon Resonance Wavelengths and the Full Width at Half-Maximum.' IEEE Photonics Journal 9.2 (2017): 1-13. [17] Xie, Qingli, et al. 'Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths.' Applied Optics 56.5 (2017): 1550-1555. [18] Shoji, T., et al. 'Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres.' Electronics Letters 38.25 (2002): 1669-1670. [19] Pu, Minhao, et al. 'Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide.' Optics Communications 283.19 (2010): 3678-3682. [20] Fu, Yunfei, et al. 'Efficient adiabatic silicon-on-insulator waveguide taper.' Photonics Research 2.3 (2014): A41-A44. [21] Roelkens, Gunther, et al. 'Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography.' IEEE Photonics Technology Letters 17.12 (2005): 2613-2615. [22] Sure, Anita, et al. 'Fabrication and characterization of three-dimensional silicon tapers.' Optics express 11.26 (2003): 3555-3561. [23] Alder, T., et al. 'High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber.' IEEE Photonics Technology Letters 12.8 (2000): 1016-1018. [24] Sanchis, Pablo, et al. 'Design of silicon-based slot waveguide configurations for optimum nonlinear performance.' Journal of Lightwave Technology 25.5 (2007): 1298-1305. [25] Fujisawa, Takeshi, and Masanori Koshiba. 'Polarization-independent optical directional coupler based on slot waveguides.' Optics letters 31.1 (2006): 56-58 [26] Barrios, Carlos A., et al. 'Label-free optical biosensing with slot-waveguides.' Optics letters 33.7 (2008): 708-710 [27] Tom, Baehr-Jones, et al. 'High-Q optical resonators in silicon-on-insulator-based slot waveguides.' Applied Physics Letters 86.8 (2005): 081101. [28] Lin, Shiyun, Juejun Hu, and Kenneth B. Crozier. 'Ultracompact, broadband slot waveguide polarization splitter.' Applied Physics Letters 98.15 (2011): 151101. [29] Tom, Baehr-Jones, et al. 'Optical modulation and detection in slotted silicon waveguides.' Optics Express 13.14 (2005): 5216-5226. [30] Alasaarela, T., et al. 'Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition.' Optics express 19.12 (2011): 11529-11538. [31] Sun, Haishan, et al. 'Reduction of scattering loss of silicon slot waveguides by RCA smoothing.' Optics letters 37.1 (2012): 13-15. [32] Kramer, P., and L. J. Van Ruyven. 'The influence of temperature on spreading resistance measurement.' Solid-State Electronics 15.7 (1972): 757-766. [33] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy. (2011). Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett, 11, 2219–2224. [34] Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy. (2012). Waveguide based compact silicon Schottky photodetector with enhanced responsivity [35] Sazio, Pier JA, et al. 'Microstructured optical fibers as high-pressure microfluidic reactors.' Science 311.5767 (2006): 1583-1586. [36] 黃彥博。 「Fabrication of Schottky Photodetector by using Si-cored fibers」。 碩士論文,國立臺灣大學光電工程學研究所,2015。<http://ntur.lib.ntu.edu.tw/handle/246246/273055>。 [37] Healy, Noel, et al. 'CO2 Laser‐Induced Directional Recrystallization to Produce Single Crystal Silicon‐Core Optical Fibers with Low Loss.' Advanced Optical Materials 4.7 (2016): 1004-1008. [38] Peacock, Anna C., et al. 'Wavelength conversion and supercontinuum generation in silicon optical fibers.' IEEE Journal of Selected Topics in Quantum Electronics 24.3 (2017): 1-9. [39] McMillen, C., et al. 'On crystallographic orientation in crystal core optical fibers II: Effects of tapering.' Optical Materials 35.2 (2012): 93-96. [40] Ren, Haonan, et al. 'Tapered silicon core fibers with nano-spikes for optical coupling via spliced silica fibers.' Optics Express 25.20 (2017): 24157-24163. [41] 呂威駿。「在多根D型矽核光纖上製作蕭特基近紅外光偵測器」。碩士論文,國立臺灣大學光電工程學研究所,2019。<https://hdl.handle.net/11296/729tu2>。 [42] Kumari, Babita, R. K. Varshney, and B. P. Pal. 'Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band.' Sensors and Actuators B: Chemical 255 (2018): 3409-3416. [43] Han, Seungjun, et al. 'Planar Packaging Strategy for Grating-Coupled Silicon Photonic Devices Using Angle-Polished Silica Waveguide Blocks.' 2019 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2019. [44] Han, Kyunghun, et al. 'Strip-slot direct mode coupler.' Optics express 24.6 (2016): 6532-6541 [45] Du, Zhenhui, et al. 'Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review.' Applied sciences 9.2 (2019): 338. [46] Raddatz, L., et al. 'An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links.' Journal of Lightwave Technology 16.3 (1998): 324. [47] Sim, Dong Hoon, Yuichi Takushima, and Yun C. Chung. 'High-speed multimode fiber transmission by using mode-field matched center-launching technique.' Journal of Lightwave Technology 27.8 (2009): 1018-1026. [48] Ren, Haonan, et al. 'Low-loss silicon core fibre platform for mid-infrared nonlinear photonics.' Light: Science Applications 8.1 (2019): 1-10. [49] Chen, Jian-Hong, Yung-Tai Sun, and Lon A. Wang. 'Reducing splicing loss between a silicon-cored optical fiber and a silica optical fiber.' IEEE Photonics Technology Letters 28.16 (2016): 1774-1777. [50] Huang, Yen Po, and Lon A. Wang. 'In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes.' Applied Physics Letters 106.19 (2015): 191106. [51] Lu, Wei-Chun, et al. 'D-Shaped Silicon-Cored Fibers as Platform to Build In-Line Schottky Photodetectors.' IEEE Photonics Technology Letters 33.6 (2021): 317-320. [52] Dong, Huazhuo, et al. 'Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors.' Optics express 25.5 (2017): 5352-5365. [53] Mere, Viphretuo, et al. 'On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator.' IEEE Sensors Journal 20.11 (2020): 5970-5975. [54] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [55] Viphavakit, Charusluk, et al. 'Optimization of a horizontal slot waveguide biosensor to detect DNA hybridization.' Applied optics 54.15 (2015): 4881-4888. [56] Barrios, Carlos Angulo. 'Optical slot-waveguide based biochemical sensors.' sensors 9.6 (2009): 4751-4765. [57] C. C. Hu, “PN and metal-semiconductor junctions” in Modern Semiconductor Devices for Integrated Circuits. Boston, MA, USA: Pearson, 2010. [58] Yeganeh, M. A., and S. H. Rahmatollahpur. 'Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes.' Journal of semiconductors 31.7 (2010): 074001. [59] Michel, J.; Liu, J.; Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nat. Photonics, 2010, 4, 527. [60] Akbari, Ali, R. Niall Tait, and Pierre Berini. 'Surface plasmon waveguide Schottky detector.' Optics express 18.8 (2010): 8505-8514. [61] U. Levy, M. Grajower, P. A. D. Gonçalves, N. A. Mortensen, J. B. Khurgin. (2017). Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission. APL Photonics, 2, 026103-1-6 [62] Berini, Pierre, Anthony Olivieri, and Chengkun Chen. 'Thin Au surface plasmon waveguide Schottky detectors on p-Si.' Nanotechnology 23.44 (2012): 444011. [63] Casalino, M., et al. 'Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm.' Journal of Applied Physics 114.15 (2013): 153103. [64] Goykhman, Ilya, et al. 'On-chip integrated, silicon–graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain.' Nano letters 16.5 (2016): 3005-3013. [65] Fernandez-Cuesta, Irene, et al. 'V-groove plasmonic waveguides fabricated by nanoimprint lithography.' Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 25.6 (2007): 2649-2653. [66] F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. (2014). Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol, 9, 780–793. [67] C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, S. B. Cronin. (2011). Graphene-Silicon Schottky Diodes. Nano Lett, 11 (11), 5097–5097. [68] Y. B. An, A. Behnam, E. Pop, and A. Ural. (2013). Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett, 102, 013110-1-5. [69] Keffous, A., et al. 'Comparison of electrical and optical parameters of Au/n-Si and Ag/n-Si Schottky barrier photodiodes.' Applied surface science 236.1-4 (2004): 42-49 [70] Tao, Meng, et al. 'Low Schottky barriers on n-type silicon (001).' Applied physics letters 83.13 (2003): 2593-2595.. [71] Naguib, H. M., and L. H. Hobbs. 'AL/Si and Al/Poly‐Si Contact Resistance in Integrated Circuits.' Journal of The Electrochemical Society 124.4 (1977): 573. [72] Nelson, S. F., and Thomas Nelson Jackson. 'Ohmic contacts to n‐type silicon‐germanium.' Applied physics letters 69.23 (1996): 3563-3565. [73] Liu, J. Q., et al. 'Low temperature fabrication and doping concentration analysis of Au/Sb ohmic contacts to n-type Si.' AIP Advances 5.11 (2015) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79356 | - |
| dc.description.abstract | 在本論文中,我們將矽核光纖以火焰抽絲的方式成功縮小到330奈米等級,且能夠利用光學顯微鏡配合Matlab,觀測在加熱漸細化過程中的矽所發出黑體輻射的特徵來判斷成功下拉抽絲的時機。我們也成功利用矽核光纖套入空芯光纖製作出奈米矽核探針,由於是利用熱拉伸的方式製作,比利用蝕刻方式製作在矽晶片上來的奈米矽探針還平滑且長度較長。此論文也接續先前我們實驗室研磨拋光D型矽核光纖的工作,首先取代手持式研磨架構,架設了滾輪式研磨平台以改善研磨的準確性和重複性,且配合雷射位移量測系統和即時測量研磨時造成的光損失來判斷研磨深度。我們在第三章中提出了凹槽式波導結合在D型矽核光纖的設計,利用Rsoft和COMSOL分別模擬3D和2D結構,其中討論了光學傳輸特性和尺寸上的設計,以及凹槽數量對於外界折射率變化靈敏度的影響,其結果顯示凹槽式D型矽核光纖的表現不輸於傳統矽波導的結構,不僅有凹槽式波導高靈敏度的優點,也保留直接與其他光纖元件耦合的優點。於第四章中,延續之前兩位學長製作於蝕刻纖衣的矽核光纖和D型矽核光纖的蕭基特光偵檢器,我們使用滾輪式研磨平台製作漸細化的結構來提升光場的強度,藉此提升光和蕭基特金屬的接觸,進而縮小所需元件面積和提升靈敏度,其結果也驗證了不輸於先前製作較大面積的D型矽核光纖蕭基特光偵檢器。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:58:46Z (GMT). No. of bitstreams: 1 U0001-2610202112010200.pdf: 4267901 bytes, checksum: bdb5aa7193df41f967c97e1fd7c18b78 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝....................... i 中文摘要.................... ii ABSTRACT ...................... iii Statement of Contributions........... v LIST OF FIGURES.................. viii Chapter1 Introduction................... 1 1.1 Motivation ................................ 1 1.2 Literature Review ................ 3 1.2.1 Fabrication of Tapered Silicon Micro-Cored Fibers.................................... 3 1.2.2 D-shaped Fiber .............................................. 7 1.2.3 Slot Waveguide ................................. 13 1.2.4 Theory of Schottky Junction ........................................ 18 Chapter 2 Fabrication of D-shaped Si-Cored Fibers and Tapered Si-Cored Fibers.... 23 2.1 Fabrication of tapered silicon cored fibers............................. 23 2.2 Fabrication of Silicon Nano Probe ............................. 31 2.3 Polishing of D-shaped Si-cored Fibers.......................... 39 Chapter 3 Design of the Slot Waveguide D-shaped Si-Cored Fiber............... 51 3.1 Introduction ....................... 51 3.2 Simulation of optical properties in D-shaped Si-Cored Fibers............... 55 3.3 Design of the Slot-waveguide in D-shaped Si-cored Fibers. .................. 59 Chapter 4 Schottky Photodetector Made on a Tapered Si-Cored Fiber ........... 70 4.1 Fabrication of Schottky Photodetector on a Tapered D-shaped Silicon Core Fiber 70 4.2 Opto-Electrical Characterization of Schottky PD on a Tapered DSCF............ 75 Chapter 5 Conclusion and Futures Works............................... 83 5.1 Conclusions ................... 83 5.2 Future Works..................... 85 References ................................ 88 | |
| dc.language.iso | en | |
| dc.title | 基於 D 型矽核光纖之凹槽式波導光纖感測器的設計與漸細化波導式蕭基特光偵檢器的開發 | zh_TW |
| dc.title | The Design of Slot Waveguide Optical Fiber Sensor and Development of Tapered Waveguide Schottky Photodetector Based on D-shaped Silicon Core Fibers | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃定洧(Hsin-Tsai Liu),徐世祥(Chih-Yang Tseng),吳肇欣 | |
| dc.subject.keyword | 矽核光纖,錐形半導體光纖,D 型光纖,凹槽式波導,蕭特基光偵檢器, | zh_TW |
| dc.subject.keyword | silicon-cored fibers,tapered semiconductor fibers,D-shaped fibers,Slot waveguides,Schottky photodetectors, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU202104214 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2610202112010200.pdf | 4.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
