請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79355完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王永松(Yung-Song Wang) | |
| dc.contributor.author | Tai-Yuan Chen | en |
| dc.contributor.author | 陳泰元 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:58:45Z | - |
| dc.date.available | 2021-11-03 | |
| dc.date.available | 2022-11-23T08:58:45Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., and Saunders, N.C. (1987). INTRASPECIFIC PHYLOGEOGRAPHY: The Mitochondrial DNA Bridge Between Population Genetics and Systematics. Annual Review of Ecology and Systematics 18, 489-522. Bade, D.L., Carpenter, S.R., Cole, J.J., Hanson, P.C., and Hesslein, R.H. (2004). Controls of d13C-DIC in lakes: Geochemistry, lake metabolism, and morphometry. Limnology and Oceanography 49, 1160-1172. Bandelt, H.J., Forster, P., and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16, 37-48. Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society 57. Buendia, and Romeo (1997). Seabass grow-out and marketing: lessons from Australia, Malaysia, and Thailand. SEAFDEC Asian Aquaculture 19, 27-28. Campana, S.E. (1999). Chemistry and composition of fish otoliths:pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263-297. Chen, L., Huang, J.R., Dai, J., Guo, Y.F., Sun, J.T., and Hong, X.Y. (2019). Intraspecific mitochondrial genome comparison identified CYTB as a high-resolution population marker in a new pest Athetis lepigone. Genomics 111, 744-752. Chou, R., and Lee, H.B. (1997). Commercial marine fish farming in Singapore. Aquaculture Research 28, 767-776. Chung, M.-T., Trueman, C.N., Godiksen, J.A., Holmstrup, M.E., and Grønkjær, P. (2019). Field metabolic rates of teleost fishes are recorded in otolith carbonate. COMMUNICATIONS BIOLOGY 2. Conroyab, J.L., M.Cobb, K., JeanLynch-Stieglitz, and J.Polissard, P. (2014). Constraints on the salinity–oxygen isotope relationship in the central tropical Pacific Ocean. Marine Chemistry 161, 26-33. Crook, D.A., Buckle, D.J., Allsop, Q., Baldwin, W., Saunders, T.M., Kyne, P.M., Woodhead, J.D., Maas, R., Roberts, B., and Douglas, M.M. (2016). Use of otolith chemistry and acoustic telemetry to elucidate migratory contingents in barramundi Lates calcarifer. Marine and Freshwater Research 28, 1554-1566. Darnaude, A.M., Sturrock, A., Trueman, C.N., David Mouillot, E., Campana, S.E., and Hunter, E. (2014). Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes? PLOS ONE 9. Davis, T.L.O. (1985). The food of barramundi, Lates calcarifer (Bloch), in coastal and inland waters of Van Diemen Gulf and the Gulf of Carpentaria, Australia. Journal of Fish Biology 26, 669-682. de Jong, M.A., Wahlberg, N., van Eijk, M., Brakefield, P.M., and Zwaan, B.J. (2011). Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia. PLoS One 6, e21385. Earl, D.A., and vonHoldt, B.M. (2011). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359-361. Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14, 2611-2620. Excoffier, L., and Lischer, H.E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10, 564-567. Excoffier, L., Smouse, P.E., and Quattro, J.M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491. Farias, I.P., Orti, G., Sampaio, I., Schneider, H., and Meyer, A. (2001). The cytochrome b gene as a phylogenetic marker: the limits of resolution for analyzing relationships among cichlid fishes. J Mol Evol 53, 89-103. Friedman, I., and O'Neil, J.R. (1977). Compilation of stable isotope fractionation factors of geochemical interest. Frost, L.A., Evans, B.S., and Jerry, D.R. (2006). Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 261, 1056-1064. FU, Y.-x. (1997). Statistical Testsof Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics 147, 915-925. Gillanders, M., B., Kingsford, and J, M. (2002). Impact of changes in flow of freshwater on estuarine and open coastal habitats and the associated organisms. Oceanography and Marine Biology 40, 233-309. Gjedrem, T. (2004). Genetic improvement of cold-water fish species. Aquaculture Research 31, 25-33. Gjedrem, T., and Robinson, N. (2014). Advances by Selective Breeding for Aquatic Species: A Review. Agricultural Sciences 05, 1152-1158. Harpending, H.C. (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66, 591-600. Hebert, P.D., Cywinska, A., Ball, S.L., and deWaard, J.R. (2003). Biological identifications through DNA barcodes. Proc Biol Sci 270, 313-321. Holmes, B.H., Steinke, D., and Ward, R.D. (2009). Identification of shark and ray fins using DNA barcoding. Fisheries Research 95, 280-288. HYSLOP, E.J. (1980). Stomach contents analysis-a review of methods and their application. Journal of Fish Biology 17, 411-429. Jakobsson, M., and Rosenberg, N.A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801-1806. Jawad, L.A. (2014). OTOLITH ATLAS OF TAIWAN FISHES - By C.-H. Lin and C.-W. Chang. Journal of Fish Biology 84. Joerakate, W., Yenmak, S., Senanan, W., Tunkijjanukij, S., Koonawootrittriron, S., and Poompuang, S. (2018). Growth performance and genetic diversity in four strains of Asian sea bass, Lates calcarifer (Bloch, 1790) cultivated in Thailand. Agriculture and Natural Resources 52, 93-98. Kimura, M. (1968). The Number of Heterozygous Nucleotide Sites Maintained in a Finite Population Due to Steady Flux of Mutations. Genetics 61, 893-903. Kitagawa, T., Ishimura, T., Uozato, R., Shirai, K., Amano, Y., Shinoda, A., Otake, T., Tsunogai, U., and Kimura, S. (2013). Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Marine Ecology Progress Series 481, 199-209. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33, 1870-1874. Lakra, W.S., Verma, M.S., Goswami, M., Lal, K.K., Mohindra, V., Punia, P., Gopalakrishnan, A., Singh, K.V., Ward, R.D., and Hebert, P. (2011). DNA barcoding Indian marine fishes. Mol Ecol Resour 11, 60-71. Laopichienpong, N., Muangmai, N., Supikamolseni, A., Twilprawat, P., Chanhome, L., Suntrarachun, S., Peyachoknagul, S., and Srikulnath, K. (2016). Assessment of snake DNA barcodes based on mitochondrial COI and Cytb genes revealed multiple putative cryptic species in Thailand. Gene 594, 238-247. Leigh, J.W., Bryant, D., and Nakagawa, S. (2015). popart : full‐feature software for haplotype network construction. Methods in Ecology and Evolution 6, 1110-1116. Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. Macbeth, G.M., and Palmer, P.J. (2011). A novel breeding programme for improved growth in barramundi Lates calcarifer (Bloch) using foundation stock from progeny-tested parents. Aquaculture 318, 325-334. Meyer-Rochow, V.B., IanCook, and HHendy, C. (1992). How to obtain clues from the otoliths of an adult fish about the aquatic environment it has been in as a larva. Comparative Biochemistry and Physiology Part A: Physiology 103. Milton, D., Halliday, I., Sellin, M., Marsh, R., Staunton-Smith, J., and Woodhead, J. (2008). The effect of habitat and environmental history on otolith chemistry of barramundi Lates calcarifer in estuarine populations of a regulated tropical river. Estuarine, Coastal and Shelf Science 78, 301-315. Milton, D.A., and Chenery, S.R. (2005). Movement patterns of barramundi Lates calcarifer, inferred from 87Sr/86Sr and Sr/Ca ratios in otoliths, indicate non-participation in spawning. MARINE ECOLOGY PROGRESS SERIES 301, 279-291. Nei, M. (1972). Genetic Distance between Populations. The American Naturalist 106, 283-292. Nelson, J., Hanson, C.W., Koenig, C., and Chanton, J. (2011). Influence of diet on stable carbon isotope composition in otoliths of juvenile red drum Sciaenops ocellatus. Aquatic Biology 13, 89-95. Nicolas, V., Schaeffer, B., Missoup, A.D., Kennis, J., Colyn, M., Denys, C., Tatard, C., Cruaud, C., and Laredo, C. (2012). Assessment of three mitochondrial genes (16S, Cytb, CO1) for identifying species in the Praomyini tribe (Rodentia: Muridae). PLoS One 7, e36586. Oosterhout, C.V., HUTCHINSON, W.F., WILLS, D.P.M., and SHIPLEY, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535-538. Park, S., Noh, P., Choi, Y.-S., Joo, S., Jeong, G., and Kim, S.-S. (2019). Population genetic structure based on mitochondrial DNA analysis of Ikonnikov’s whiskered bat (Myotis ikonnikovi—Chiroptera: Vespertilionidae) from Korea. Journal of Ecology and Environment 43. Peakall, R., and Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28, 2537-2539. Pethiyagoda, R., and Gill, A.C. (2012). Description of two new species of sea bass (Teleostei: Latidae: Lates) from Myanmar and Sri Lanka. Zootaxa. Phumichai, C., Phumichai, T., and Wongkaew, A. (2015). Novel Chloroplast Microsatellite (cpSSR) Markers for Genetic Diversity Assessment of Cultivated and Wild Hevea Rubber. Plant Molecular Biology Reporter 33, 1486-1498. Pritchard, J.K., Stephens, M., and Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics 155, 945-959. R.Thorrold, S., E.Campana, S., M.Jones, C., and K.Swart, P. (1997). Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 61, 2909-2919. Ramos-Onsins, S.E., and Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19, 2092-2100. Rosenberg, N.A. (2003). distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4, 137-138. Schwarcz, H.P., Gao, Y., Campana, S., Browne, D., Knyf, M., and Brand, U. (1998). Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 55, 1798-1806. Shirai, K., Koyama, F., Murakami-Sugihara, N., Nanjo, K., Higuchi, T., Kohno, H., Wananabe, Y., Okamoto, K., and Sano, M. (2018). Reconstruction of the salinity history associated with movements of mangrove fishes using otolith oxygen isotopic analysis. Marine Ecology Progress Series 593, 127-139. Slatkin, M. (1994). A Measure of Population Subdivision Based on Microsatellite Allele Frequencie. Genetics 139, 457-462. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595. Tajima, F. (1996). Infinite-allele model and infinite-site model in population genetics. journal of Genetics 75, 27-31. Tobe, S.S., Kitchener, A.C., and Linacre, A.M. (2010). Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome B and cytochrome oxidase subunit I mitochondrial genes. PLoS One 5, e14156. Vieira, M.L.C., Santini, L., Diniz, A.L., and Munhoz, C.d.F. (2016). Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology 39, 312-328. Vij, S., Purushothaman, K., Gopikrishna, G., Lau, D., Saju, J.M., Shamsudheen, K.V., Kumar, K.V., Basheer, V.S., Gopalakrishnan, A., Hossain, M.S., et al. (2014). Barcoding of Asian seabass across its geographic range provides evidence for its bifurcation into two distinct species. Frontiers in Marine Science 1. Wang, C.M., Zhu, Z.Y., Lo, L.C., Feng, F., Lin, G., Yang, W.T., Li, J., and Yue, G.H. (2007). A microsatellite linkage map of Barramundi, Lates calcarifer. Genetics 175, 907-915. Wang, L., X., S., Y., S., Z., M., and H., L. (2012). Loss of genetic diversity in the cultured stocks of the large yellow croaker, Larimichthys crocea, revealed by microsatellites. Int J Mol Sci 13, 5584-5597. Ward, R.D., Holmes, B.H., and Yearsley, G.K. (2008). DNA barcoding reveals a likely second species of Asian sea bass (barramundi) (Lates calcarifer). Journal of Fish Biology 72, 458-463. Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., and Hebert, P.D. (2005). DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci 360, 1847-1857. Weidmana, C.R., and Millnerb, R. (2000). High-resolution stable isotope records from North Atlantic cod. Fisheries Research 46, 327-342. Yonas, F., Hans, K., A., R.M., M., v.A.J.A., and Henk, B. (2007). Effects of inbreeding on survival, body weight and fluctuating asymmetry (FA) in Nile tilapia, Oreochromis niloticus. Aquaculture 264, 27-35. Yue, G.H., Zhu, Z.Y., Lo, L.C., Wang, C.M., Lin, G., Feng, F., Pang, H.Y., Li, J., Gong, P., Liu, H.M., et al. (2009). Genetic variation and population structure of Asian seabass (Lates calcarifer) in the Asia-Pacific region. Aquaculture 293, 22-28. 張賜玲 (2004). 金目鱸養殖. 水產試驗所. 謝瑀 (2017). 以穩定性同位素分析解析七星鱸魚之棲地利用與辨識養殖和野生個體. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79355 | - |
| dc.description.abstract | 金目鱸,又稱尖吻鱸,為一種廣鹽性魚類,分佈於印度-西太平洋、臺灣、東南亞、澳洲一帶,在臺灣廣泛養殖於南部地區,作為臺灣重要的經濟魚種,目前缺少其系群管理、受精卵及魚苗來源等相關的研究,為改善並篩選優勢種苗以長期維持養殖品質,評估養殖金目鱸的族群遺傳資訊為首要步驟,本研究使用粒線體DNA中Cyt b、COI以及核DNA中的微衛星基因座作為遺傳標記分析臺灣金目鱸三養殖族群(嘉義養殖場A池、嘉義養殖場B池、臺南養殖場)及淡水河口族群的遺傳相關資訊,其中以粒線體DNA物種鑑定結果顯示現存臺灣的金目鱸中存在兩物種(Lates calcarifer與Lates uwisara),且此兩物種無法在形質特徵上區別。本研究分析樣本中L. calcarifer的遺傳多樣性及遺傳結構,粒線體DNA分析結果中顯示,除了嘉義B養殖族群外,各族群的單倍型多樣性高以及核苷酸多樣性低的情形,單倍型網絡圖中,各族群共享祖先單倍型的同時仍各自具有特有單倍型,遺傳分化指數(ΦST)結果顯示族群間具一定遺傳差異;而微衛星基因座分析結果中,各族群均具相當程度的遺傳多樣性,此外,以微衛星作為標記進行主座標軸分析、貝氏分類指派、遺傳分化指數解析各族群間的遺傳結構關係,結果顯示各族群僅有低度分化程度,部分族群呈現彼此混合但仍具一定的遺傳差異,基於養殖場間理應不具基因交流,本研究推測各養殖場間可能具交換種苗的行為。 本研究檢視淡水河口捕獲的金目鱸胃內容物並分析耳石穩定性碳及氧同位素以探討養殖與野生金目鱸的生活史。淡水河口捕獲的樣本其同位素值範圍較為廣泛,而養殖的樣本於生命各階段皆呈現相近且具規律的同位素值變化,此外,以氧同位素分化公式估算魚體經歷的鹽度變化,結果顯示部分淡水野生個體在各時期呈現規律性的遷移,但個體間經歷的鹽度差異大,表示金目鱸棲地利用具個體間差異,從仔稚魚期的鹽度研判,海水水域以及淡水環境都可能是其產卵場。二次判別分析顯示各養殖場間在耳石同位素值具顯著差異,且此差異可於判別分析中達到至高95%的準確率。本研究以碳氧穩定性同位素能有效建立金目鱸的棲地利用並辨別養殖與野生個體,可供未來金目鱸漁業資源管理及評估相關政策時做為參考依據。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:58:45Z (GMT). No. of bitstreams: 1 U0001-2510202112121100.pdf: 5739683 bytes, checksum: d8d024897273374b8ea49c184683aa11 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 i Abstract ii 表目錄 v 圖目錄 vi 一、 前言 7 1.1. 金目鱸(Lates calcarifer) 7 1.2. 養殖現況與問題 7 1.3. COI、Cyt b及微衛星(microsatellite) 8 1.4. 耳石及魚類生活史 9 1.5. 研究動機與目的 10 二、 材料方法 11 2.1 樣本採集 11 2.2 物種鑑定 11 2.3 胃內容物分析 12 2.3.1 出現率法(Occurrence method) 12 2.3.2 豐富度法(Numerical method) 12 2.3.3 重量法(Gravimetric method) 12 2.4 DNA萃取及遺傳標記(Genetic marker)篩選 12 2.5 聚合酶鏈鎖反應(Polymerase Chain Reaction) 13 2.6 親緣關係及族群遺傳結構分析 13 2.6.1 粒線體DNA(COI cyt b) 13 2.6.2 微衛星基因座(Microsatellite loci) 16 2.7 耳石樣本處理及分析 17 2.7.1. 耳石包埋與研磨 17 2.7.2. 穩定碳、氧同位素分析 18 2.7.3. 鹽度估計時序變化圖 18 2.7.4. 統計與二次判別分析 19 三、 結果 21 3.1 物種鑑定 21 3.2 胃內容物分析 21 3.3 DNA萃取及遺傳標記篩選 22 3.4 粒線體DNA (COI Cyt b) 22 3.4.1. 親緣關係分析 22 3.4.2. 遺傳多樣性 22 3.4.3. 族群遺傳結構 23 3.4.4. AMOVA 23 3.4.5. 族群狀態分析 24 3.5 微衛星 24 3.5.1. 基因型分型(Genotyping)及資料分析 24 3.5.2. 族群遺傳結構 24 3.6 耳石同位素值分析 25 3.6.1. 同位素值—生長時序變化圖 25 3.6.2. 耳石碳、氧同位素值統計分析 26 3.6.3. 估計鹽度時序變化圖 28 3.6.4. 二次判別分析 28 四、 討論 29 4.1. 隱蔽種的存在 29 4.2. 各族群遺傳多樣性及族群遺傳結構探討 30 4.3. 族群狀態探討 32 4.4. 耳石碳氧同位素 33 4.5. 鹽度史重建 35 4.6. 養殖與野生個體之判別 36 五、 結論 38 六、 參考文獻 39 | |
| dc.language.iso | zh-TW | |
| dc.title | 臺灣金目鱸屬(Lates)物種鑑定、族群遺傳結構分析及辨別養殖與野生個體 | zh_TW |
| dc.title | "Lates species identification, population genetic structure analysis and discrimination from wild and cultured populations in Taiwan" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蕭仁傑(Jen-Chieh Shiao) | |
| dc.contributor.oralexamcommittee | 陳韋仁(Hsin-Tsai Liu),林洪君(Chih-Yang Tseng) | |
| dc.subject.keyword | 金目鱸,微衛星,耳石穩定性同位素,族群遺傳結構, | zh_TW |
| dc.subject.keyword | Lates calcarifer,Lates uwisara,mircrosatellite,otolith stable isotope,population genetic strcture, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU202104129 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2510202112121100.pdf | 5.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
