Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79350
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖淑貞(Shwu-Jen Liaw)
dc.contributor.authorWen-Yuan Linen
dc.contributor.author林文淵zh_TW
dc.contributor.authorf04424003
dc.date.accessioned2022-11-23T08:58:39Z-
dc.date.available2021-11-03
dc.date.available2022-11-23T08:58:39Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-27
dc.identifier.citation1. Jacobsen, S.M. and M.E. Shirtliff, Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2(5): p. 460-5. 2. Warren, J.W., et al., A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis, 1982. 146(6): p. 719-23. 3. Hooton, T.M., et al., Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis, 2010. 50(5): p. 625-63. 4. Jacobsen, S.M., et al., Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev, 2008. 21(1): p. 26-59. 5. Mobley, H.L. and J.W. Warren, Urease-positive bacteriuria and obstruction of long-term urinary catheters. J Clin Microbiol, 1987. 25(11): p. 2216-7. 6. Griffith, D.P., D.M. Musher, and C. Itin, Urease. The primary cause of infection-induced urinary stones. Invest Urol, 1976. 13(5): p. 346-50. 7. Griffith, D.P. and C.A. Osborne, Infection (urease) stones. Miner Electrolyte Metab, 1987. 13(4): p. 278-85. 8. Fowler, J.E., Jr., Bacteriology of branched renal calculi and accompanying urinary tract infection. J Urol, 1984. 131(2): p. 213-5. 9. Lerner, S.P., M.J. Gleeson, and D.P. Griffith, Infection stones. J Urol, 1989. 141(3 Pt 2): p. 753-8. 10. McLean, R.J., et al., Histochemical and biochemical urease localization in the periplasm and outer membrane of two Proteus mirabilis strains. Can J Microbiol, 1986. 32(10): p. 772-8. 11. Prywer, J. and M. Olszynski, Bacterially Induced Formation of Infectious Urinary Stones: Recent Developments and Future Challenges. Curr Med Chem, 2017. 24(3): p. 292-311. 12. Torzewska, A. and A. Rozalski, Various intensity of Proteus mirabilis-induced crystallization resulting from the changes in the mineral composition of urine. Acta Biochim Pol, 2015. 62(1): p. 127-32. 13. Armbruster, C.E., et al., The Pathogenic Potential of Proteus mirabilis Is Enhanced by Other Uropathogens during Polymicrobial Urinary Tract Infection. Infect Immun, 2017. 85(2). 14. Armbruster, C.E., et al., Increased incidence of urolithiasis and bacteremia during Proteus mirabilis and Providencia stuartii coinfection due to synergistic induction of urease activity. J Infect Dis, 2014. 209(10): p. 1524-32. 15. Li, X., et al., Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun, 2002. 70(1): p. 389-94. 16. Huang, H.S., et al., Use of polymerase chain reaction to detect Proteus mirabilis and Ureaplasma urealyticum in urinary calculi. J Formos Med Assoc, 1999. 98(12): p. 844-50. 17. Schaffer, J.N., et al., Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation. Proc Natl Acad Sci U S A, 2016. 113(16): p. 4494-9. 18. Armbruster, C.E., H.L.T. Mobley, and M.M. Pearson, Pathogenesis of Proteus mirabilis Infection. EcoSal Plus, 2018. 8(1). 19. Mobley, H.L., et al., Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1996. 64(12): p. 5332-40. 20. Alamuri, P., et al., Adhesion, invasion, and agglutination mediated by two trimeric autotransporters in the human uropathogen Proteus mirabilis. Infect Immun, 2010. 78(11): p. 4882-94. 21. Alamuri, P., et al., Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection. Infect Immun, 2009. 77(2): p. 632-41. 22. Peerbooms, P.G., A.M. Verweij, and D.M. MacLaren, Vero cell invasiveness of Proteus mirabilis. Infect Immun, 1984. 43(3): p. 1068-71. 23. Allison, C., et al., Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun, 1992. 60(11): p. 4740-6. 24. Chippendale, G.R., et al., Internalization of Proteus mirabilis by human renal epithelial cells. Infect Immun, 1994. 62(8): p. 3115-21. 25. Mathoera, R.B., et al., Pathological and therapeutic significance of cellular invasion by Proteus mirabilis in an enterocystoplasty infection stone model. Infect Immun, 2002. 70(12): p. 7022-32. 26. Oelschlaeger, T.A. and B.D. Tall, Uptake pathways of clinical isolates of Proteus mirabilis into human epithelial cell lines. Microb Pathog, 1996. 21(1): p. 1-16. 27. Braude, A.I. and J. Siemienski, Role of bacterial urease in experimental pyelonephritis. J Bacteriol, 1960. 80: p. 171-9. 28. Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 29. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54. 30. Allison, C., et al., The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis, 1994. 169(5): p. 1155-8. 31. Belas, R., D. Erskine, and D. Flaherty, Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J Bacteriol, 1991. 173(19): p. 6279-88. 32. Flemming, H.C. and J. Wingender, The biofilm matrix. Nat Rev Microbiol, 2010. 8(9): p. 623-33. 33. McDougald, D., et al., Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol, 2012. 10(1): p. 39-50. 34. Jones, B.D. and H.L. Mobley, Proteus mirabilis urease: nucleotide sequence determination and comparison with jack bean urease. J Bacteriol, 1989. 171(12): p. 6414-22. 35. Heimer, S.R. and H.L. Mobley, Interaction of Proteus mirabilis urease apoenzyme and accessory proteins identified with yeast two-hybrid technology. J Bacteriol, 2001. 183(4): p. 1423-33. 36. Thomas, V.J. and C.M. Collins, Identification of UreR binding sites in the Enterobacteriaceae plasmid-encoded and Proteus mirabilis urease gene operons. Mol Microbiol, 1999. 31(5): p. 1417-28. 37. Coker, C., O.O. Bakare, and H.L. Mobley, H-NS is a repressor of the Proteus mirabilis urease transcriptional activator gene ureR. J Bacteriol, 2000. 182(9): p. 2649-53. 38. Poore, C.A. and H.L. Mobley, Differential regulation of the Proteus mirabilis urease gene cluster by UreR and H-NS. Microbiology, 2003. 149(Pt 12): p. 3383-94. 39. D'Orazio, S.E., V. Thomas, and C.M. Collins, Activation of transcription at divergent urea-dependent promoters by the urease gene regulator UreR. Mol Microbiol, 1996. 21(3): p. 643-55. 40. Rozalski, A., Z. Sidorczyk, and K. Kotelko, Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev, 1997. 61(1): p. 65-89. 41. Griffith, D.P., et al., Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur Urol, 1991. 20(3): p. 243-7. 42. Williams, J.J., J.S. Rodman, and C.M. Peterson, A randomized double-blind study of acetohydroxamic acid in struvite nephrolithiasis. N Engl J Med, 1984. 311(12): p. 760-4. 43. Griffith, D.P., et al., A randomized trial of acetohydroxamic acid for the treatment and prevention of infection-induced urinary stones in spinal cord injury patients. J Urol, 1988. 140(2): p. 318-24. 44. Braun, V. and T. Focareta, Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol, 1991. 18(2): p. 115-58. 45. Swihart, K.G. and R.A. Welch, Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun, 1990. 58(6): p. 1861-9. 46. Burall, L.S., et al., Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun, 2004. 72(5): p. 2922-38. 47. Armbruster, C.E., et al., Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog, 2017. 13(6): p. e1006434. 48. Himpsl, S.D., et al., Identification of virulence determinants in uropathogenic Proteus mirabilis using signature-tagged mutagenesis. J Med Microbiol, 2008. 57(Pt 9): p. 1068-78. 49. Zhao, H., et al., Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection. Microbiology, 1999. 145 ( Pt 1): p. 185-95. 50. Nielubowicz, G.R., S.N. Smith, and H.L. Mobley, Outer membrane antigens of the uropathogen Proteus mirabilis recognized by the humoral response during experimental murine urinary tract infection. Infect Immun, 2008. 76(9): p. 4222-31. 51. Flannery, E.L., L. Mody, and H.L. Mobley, Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun, 2009. 77(11): p. 4887-94. 52. Alamuri, P. and H.L. Mobley, A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol Microbiol, 2008. 68(4): p. 997-1017. 53. Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33. 54. Studholme, D.J. and M. Buck, The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol Lett, 2000. 186(1): p. 1-9. 55. Morett, E. and L. Segovia, The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol, 1993. 175(19): p. 6067-74. 56. Shingler, V., Signal sensory systems that impact sigma(5)(4) -dependent transcription. FEMS Microbiol Rev, 2011. 35(3): p. 425-40. 57. Wigneshweraraj, S., et al., Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol, 2008. 68(3): p. 538-46. 58. Riordan, J.T. and A. Mitra, Regulation of Escherichia coli Pathogenesis by Alternative Sigma Factor N. EcoSal Plus, 2017. 7(2). 59. Kazmierczak, M.J., M. Wiedmann, and K.J. Boor, Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev, 2005. 69(4): p. 527-43. 60. Gaillardin, C.M. and B. Magasanik, Involvement of the product of the glnF gene in the autogenous regulation of glutamine synthetase formation in Klebsiella aerogenes. J Bacteriol, 1978. 133(3): p. 1329-38. 61. Hunt, T.P. and B. Magasanik, Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Proc Natl Acad Sci U S A, 1985. 82(24): p. 8453-7. 62. Hirschman, J., et al., Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. Proc Natl Acad Sci U S A, 1985. 82(22): p. 7525-9. 63. Popham, D.L., et al., Function of a bacterial activator protein that binds to transcriptional enhancers. Science, 1989. 243(4891): p. 629-35. 64. Reitzer, L. and B.L. Schneider, Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev, 2001. 65(3): p. 422-44, table of contents. 65. Francke, C., et al., Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics, 2011. 12: p. 385. 66. Zhao, K., M. Liu, and R.R. Burgess, Promoter and regulon analysis of nitrogen assimilation factor, sigma54, reveal alternative strategy for E. coli MG1655 flagellar biosynthesis. Nucleic Acids Res, 2010. 38(4): p. 1273-83. 67. Leang, C., et al., Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens. BMC Genomics, 2009. 10: p. 331. 68. Wolfe, A.J., et al., Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization. Appl Environ Microbiol, 2004. 70(4): p. 2520-4. 69. Buck, M., et al., In vitro and in vivo methodologies for studying the Sigma 54-dependent transcription. Methods Mol Biol, 2015. 1276: p. 53-79. 70. Buck, M., et al., The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol, 2000. 182(15): p. 4129-36. 71. Wong, C., Y. Tintut, and J.D. Gralla, The domain structure of sigma 54 as determined by analysis of a set of deletion mutants. J Mol Biol, 1994. 236(1): p. 81-90. 72. Sasse-Dwight, S. and J.D. Gralla, Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc Natl Acad Sci U S A, 1988. 85(23): p. 8934-8. 73. Syed, A. and J.D. Gralla, Isolation and properties of enhancer-bypass mutants of sigma 54. Mol Microbiol, 1997. 23(5): p. 987-95. 74. Wang, J.T., et al., Converting Escherichia coli RNA polymerase into an enhancer-responsive enzyme: role of an NH2-terminal leucine patch in sigma 54. Science, 1995. 270(5238): p. 992-4. 75. Taylor, M., et al., The RpoN-box motif of the RNA polymerase sigma factor sigma N plays a role in promoter recognition. Mol Microbiol, 1996. 22(5): p. 1045-54. 76. Smith, A.H., et al., Evidence that RpoS (sigmaS) in Borrelia burgdorferi is controlled directly by RpoN (sigma54/sigmaN). J Bacteriol, 2007. 189(5): p. 2139-44. 77. Ouyang, Z., J.S. Blevins, and M.V. Norgard, Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi. Microbiology, 2008. 154(Pt 9): p. 2641-58. 78. Asayama, M. and S. Imamura, Stringent promoter recognition and autoregulation by the group 3 sigma-factor SigF in the cyanobacterium Synechocystis sp. strain PCC 6803. Nucleic Acids Res, 2008. 36(16): p. 5297-305. 79. Hubner, A., et al., Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A, 2001. 98(22): p. 12724-9. 80. Bittner, M., et al., RpoS and RpoN are involved in the growth-dependent regulation of rfaH transcription and O antigen expression in Salmonella enterica serovar Typhi. Microb Pathog, 2004. 36(1): p. 19-24. 81. Wang, L., et al., Expression of the O antigen gene cluster is regulated by RfaH through the JUMPstart sequence. FEMS Microbiol Lett, 1998. 165(1): p. 201-6. 82. Marolda, C.L. and M.A. Valvano, Promoter region of the Escherichia coli O7-specific lipopolysaccharide gene cluster: structural and functional characterization of an upstream untranslated mRNA sequence. J Bacteriol, 1998. 180(12): p. 3070-9. 83. Bailey, M.J., et al., Escherichia coli HlyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes. Mol Microbiol, 1992. 6(8): p. 1003-12. 84. Leeds, J.A. and R.A. Welch, RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J Bacteriol, 1996. 178(7): p. 1850-7. 85. Stevens, M.P., B.R. Clarke, and I.S. Roberts, Regulation of the Escherichia coli K5 capsule gene cluster by transcription antitermination. Mol Microbiol, 1997. 24(5): p. 1001-12. 86. Mitra, A., et al., sigma(N) -dependent control of acid resistance and the locus of enterocyte effacement in enterohemorrhagic Escherichia coli is activated by acetyl phosphate in a manner requiring flagellar regulator FlhDC and the sigma(S) antagonist FliZ. Microbiologyopen, 2014. 3(4): p. 497-512. 87. Pesavento, C., et al., Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev, 2008. 22(17): p. 2434-46. 88. Pesavento, C. and R. Hengge, The global repressor FliZ antagonizes gene expression by sigmaS-containing RNA polymerase due to overlapping DNA binding specificity. Nucleic Acids Res, 2012. 40(11): p. 4783-93. 89. Andrews, S.C., et al., A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology, 1997. 143 ( Pt 11): p. 3633-47. 90. Lindenstrauss, U., et al., The dual-function chaperone HycH improves assembly of the formate hydrogenlyase complex. Biochem J, 2017. 474(17): p. 2937-2950. 91. Rossmann, R., G. Sawers, and A. Bock, Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol, 1991. 5(11): p. 2807-14. 92. Skibinski, D.A., et al., Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma(54)-dependent transcriptional activators FhlA and HyfR. J Bacteriol, 2002. 184(23): p. 6642-53. 93. Hopper, S. and A. Bock, Effector-mediated stimulation of ATPase activity by the sigma 54-dependent transcriptional activator FHLA from Escherichia coli. J Bacteriol, 1995. 177(10): p. 2798-803. 94. Noguchi, K., et al., Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS One, 2010. 5(4): p. e10132. 95. Qian, L., et al., Hydrogen as a new class of radioprotective agent. Int J Biol Sci, 2013. 9(9): p. 887-94. 96. Nie, W., et al., Hydrogenase: the next antibiotic target? Clin Sci (Lond), 2012. 122(12): p. 575-80. 97. Altuvia, S., et al., The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. Embo j, 1998. 17(20): p. 6069-75. 98. Myers, K.S., et al., Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet, 2013. 9(6): p. e1003565. 99. Gopel, Y. and B. Gorke, Interaction of lipoprotein QseG with sensor kinase QseE in the periplasm controls the phosphorylation state of the two-component system QseE/QseF in Escherichia coli. PLoS Genet, 2018. 14(7): p. e1007547. 100. Reading, N.C., et al., The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci U S A, 2009. 106(14): p. 5889-94. 101. Reading, N.C., et al., A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol, 2007. 189(6): p. 2468-76. 102. Reading, N.C., et al., A transcriptome study of the QseEF two-component system and the QseG membrane protein in enterohaemorrhagic Escherichia coli O157 : H7. Microbiology, 2010. 156(Pt 4): p. 1167-75. 103. Gopel, Y., et al., Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. Nucleic Acids Res, 2011. 39(4): p. 1294-309. 104. Gopel, Y., M.A. Khan, and B. Gorke, Menage a trois: post-transcriptional control of the key enzyme for cell envelope synthesis by a base-pairing small RNA, an RNase adaptor protein, and a small RNA mimic. RNA Biol, 2014. 11(5): p. 433-42. 105. Prywer, J., A. Torzewska, and T. Plocinski, Unique surface and internal structure of struvite crystals formed by Proteus mirabilis. Urol Res, 2012. 40(6): p. 699-707. 106. Vogel, H.J. and D.M. Bonner, Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem, 1956. 218(1): p. 97-106. 107. Ellis, M.J., et al., A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nat Commun, 2019. 10(1): p. 197. 108. Castaño, I. and F. Bastarrachea, glnF-lacZ fusions in Escherichia coli: studies on glnF expression and its chromosomal orientation. Mol Gen Genet, 1984. 195(1-2): p. 228-33. 109. Jishage, M., et al., Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. J Bacteriol, 1996. 178(18): p. 5447-51. 110. Joly, N., et al., Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev, 2010. 34(5): p. 797-827. 111. Flores-Mireles, A.L., et al., Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol, 2015. 13(5): p. 269-84. 112. Messenger, S.L. and J. Green, FNR-mediated regulation of hyp expression in Escherichia coli. FEMS Microbiol Lett, 2003. 228(1): p. 81-6. 113. Maier, T., U. Binder, and A. Bock, Analysis of the hydA locus of Escherichia coli: two genes (hydN and hypF) involved in formate and hydrogen metabolism. Arch Microbiol, 1996. 165(5): p. 333-41. 114. Self, W.T., A. Hasona, and K.T. Shanmugam, Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol, 2004. 186(2): p. 580-7. 115. Vivijs, B., et al., Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria. Front Microbiol, 2015. 6: p. 150. 116. Foster, J.W., Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol, 2004. 2(11): p. 898-907. 117. Kanjee, U. and W.A. Houry, Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol, 2013. 67: p. 65-81. 118. Vestergaard, M., et al., Inhibition of the ATP Synthase Eliminates the Intrinsic Resistance of Staphylococcus aureus towards Polymyxins. MBio, 2017. 8(5). 119. Vestergaard, M., K. Nohr-Meldgaard, and H. Ingmer, Multiple pathways towards reduced membrane potential and concomitant reduction in aminoglycoside susceptibility in Staphylococcus aureus. Int J Antimicrob Agents, 2018. 51(1): p. 132-135. 120. Armbruster, C.E., et al., Arginine promotes Proteus mirabilis motility and fitness by contributing to conservation of the proton gradient and proton motive force. Microbiologyopen, 2014. 3(5): p. 630-41. 121. Zhang, N., et al., The role of the conserved phenylalanine in the sigma54-interacting GAFTGA motif of bacterial enhancer binding proteins. Nucleic Acids Res, 2009. 37(18): p. 5981-92. 122. Dago, A.E., et al., A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation. J Biol Chem, 2007. 282(2): p. 1087-97. 123. Clemmer, K.M. and P.N. Rather, Regulation of flhDC expression in Proteus mirabilis. Res Microbiol, 2007. 158(3): p. 295-302. 124. Rumbaugh, K.P. and K. Sauer, Biofilm dispersion. Nat Rev Microbiol, 2020. 18(10): p. 571-586. 125. Jansen, A.M., et al., Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect Immun, 2004. 72(12): p. 7294-305. 126. Liu, M.C., et al., New aspects of RpoE in uropathogenic Proteus mirabilis. Infect Immun, 2015. 83(3): p. 966-77. 127. Li, L., et al., BSRD: a repository for bacterial small regulatory RNA. Nucleic Acids Res, 2013. 41(Database issue): p. D233-8. 128. Moreira, C.G. and V. Sperandio, The Epinephrine/Norepinephrine/Autoinducer-3 Interkingdom Signaling System in Escherichia coli O157:H7. Adv Exp Med Biol, 2016. 874: p. 247-61. 129. Rektorschek, M., et al., Influence of pH on metabolism and urease activity of Helicobacter pylori. Gastroenterology, 1998. 115(3): p. 628-41. 130. McDowall, J.S., et al., Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci U S A, 2014. 111(38): p. E3948-56. 131. Morris, S.M., Jr., Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr, 2002. 22: p. 87-105. 132. Pearson, M.M. and H.L.T. Mobley, The type III secretion system of Proteus mirabilis HI4320 does not contribute to virulence in the mouse model of ascending urinary tract infection. J Med Microbiol, 2007. 56(Pt 10): p. 1277-1283. 133. Lai, M.A., et al., Innate immune detection of flagellin positively and negatively regulates salmonella infection. PLoS One, 2013. 8(8): p. e72047. 134. Flemming H-C, W.J., Griegbe, Mayer C., Biofilms: recent advances in their study and control. CRC Press, 2000: p. P 19-34. 135. Stergiani I. Arampatzi, G.G., Eudoxia Diza, Biofilm formation: A complicated microbiological process. Aristotle University Medical Journal, 2011. Vol 38(No 2 ). 136. Donlan, R.M., Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis, 2001. 33(8): p. 1387-92. 137. Malik, A., et al., Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl Environ Microbiol, 2003. 69(10): p. 6056-63. 138. Thomas, V.C., et al., Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol, 2008. 190(16): p. 5690-8. 139. Selan, L., et al., Serratiopeptidase: a well-known metalloprotease with a new non-proteolytic activity against S. aureus biofilm. BMC Microbiol, 2015. 15: p. 207. 140. Bruna, R.E., et al., CpxR-Dependent Thermoregulation of Serratia marcescens PrtA Metalloprotease Expression and Its Contribution to Bacterial Biofilm Formation. J Bacteriol, 2018. 200(8). 141. Scavone, P., et al., Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation. Pathog Dis, 2016. 74(5). 142. Khan, M.A., et al., Small RNA-binding protein RapZ mediates cell envelope precursor sensing and signaling in Escherichia coli. Embo j, 2020. 39(6): p. e103848. 143. Durica-Mitic, S., et al., Adaptor protein RapZ activates endoribonuclease RNase E by protein-protein interaction to cleave a small regulatory RNA. Rna, 2020. 26(9): p. 1198-1215.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79350-
dc.description.abstract"奇異變型桿菌 (Proteus mirabilis)是主要造成泌尿道感染 (urinary tract infection, UTI)的病原菌之一,在長期使用尿導管的患者,容易造成伺機性感染。細菌為了適應環境,必須快速改變基因組表現, alternative sigma factors的功能便是因應外來環境變化,將轉錄組重新定向 (redirection)。RpoN為alternative sigma factors的一員,常與移動性、生物膜和尿素酶等細菌毒性因子相關,需要特定的enhancer binding proteins (EBPs)進行活化後,始能啟動轉錄。透過BLAST分析P. mirabilis N2 genome找出4個可能EBPs FhlA, QseF, PspF與NtrC,並挑選fhlA與qseF突變株分析重要毒性因子如尿素酶活性、移動性以及生物膜形成能力等。在尿素酶活性的部分,rpoN與fhlA突變株尿素酶活性顯著低於野生株;移動性的部分,rpoN及qseF突變株表面移行能力較野生株差;而生物膜形成能力上相較於野生株,qseF突變株則顯著低於野生株,而rpoN突變株則沒有明顯差異。 FhlA為formate hydrogenlyase (FHL)activator,擁有GAF domain來感受外界因子,可以活化的下游基因fdhF及hyf operon表現並形成FHL complex,FHL complex可以將生長環境去酸化。我們發現P. mirabilis N2尿素酶活性隨著pH值增加而增加,在pH9的時候達到最佳活性,因此我們假設FHL會協同尿素酶將環境去酸化,而使得尿素酶活性增加,實驗顯示隨著環境pH值增加到pH 9,hyfG及fhlA失去調控尿素酶活性的能力,而將野生株及hyfG突變株培養在pH 5人工尿中,發現hyf突變株去酸化的速度顯著低於野生株。我們利用人工尿模擬尿液環境,測試尿結石形成能力,可以看到hyfG及fhlA突變株尿結石形成能力顯著低於野生株。利用ICR母鼠泌尿道感染模型進行試驗,不論在膀胱或腎臟hyfG及fhlA突變株定殖能力皆顯著下降。 QseF為雙組成系統QseEF的response regulator,我們進行小鼠泌尿道感染試驗,發現qseF突變株定殖能力不論在膀胱或腎臟皆顯著低於野生株。 QseF正向調控glmY (sRNA)、flhDC (鞭毛調控轉錄因子)、cheA (化學趨化蛋白)以及負向調控rcsB (轉錄因子)等基因表現,其中QseF正向調控glmY基因轉錄,而GlmY可以直接與cheA mRNA作用,調控cheA的轉譯,進一步影響細菌移動性。 我們看到QseF正向調控glmZ及rpoS表現,而先前實驗室發現GlmZ透過正向調控rpoS表現可以幫助細菌抵抗酸性與氧化壓力環境,增加在巨噬細胞存活率,此外相對於野生株,qseEGF以及glmZ突變株對膀胱細胞侵入能力顯著下降。在本文我們也發現溶血素基因hpmAB表現量在qseF突變株中降低,同時qseF突變株對於膀胱細胞毒性也顯著低於野生株。 除了移動性、壓力抗性以及細胞毒性之外,QseF同時調控了生物膜的形成,利用螢光顯微鏡可以觀察到24小時qseF突變株生物膜呈網狀分布,而野生株則能聚集發展。我們將時間細分為2小時一個單位,監測生物膜形成的量,可以發現在8小時之前(含),qseF突變株生物膜形成量大於野生株,而10小時開始qseF突變株生物膜量維持不變而野生株持續增加,以至於24小時顯著低於野生株。RNA-seq資料及qPCR確認,可以看到zapABCD蛋白酶相關基因在qseF突變株中較野生株下降,並利用qPCR發現QseF在24h時正向調控sRNA RyhB3、RprA以及alternative sigma factor RpoE,先前文獻顯示P. mirabilis生物膜相關纖毛MR/P受RpoE調控,在qPCR中發現RyhB3正向調控zapA, rpoE以及mrpA;RprA則正向調控mrpA。我們測試生物膜相關因子發現qseF突變株自聚集及細胞貼附能力較野生株上升,而僅有蛋白酶活性下降,因此我們認為蛋白酶為生物膜發展所必需,影響生物膜繼續發展,而受RpoE調控的MR/P纖毛在排除自聚集以及細胞貼附能力之外,仍然為生物膜生成之重要因子。 本研究我們發現了RpoN相關EBPs FhlA及QseF能調控移動性、尿素酶活性、生物膜形成能力等重要致病因子,我們推論一、在開始形成extracellular cluster時RpoN-FhlA調控FHL表現並與尿素酶協同作用,加速環境去酸化使礦物質結晶沉積,進一步形成感染性尿結石及生物膜。二、在細菌懸浮時QseF受尿素及油酸(oleic acid)抑制,使得纖毛表現上升,鞭毛表現下降,一方面增加細菌貼附細胞能力,另一方面減少鞭毛抗原躲避宿主免疫反應;三、在遇到固態表面時,油酸則從負向調控轉為正向調控QseF,QseF正向調控細菌移動性,使P. mirabilis可以上行感染、促進細菌侵入宿主細胞,躲避免疫反應、增加細胞毒性,以獲取更多養分、增加細菌壓力抗性,以提高被巨噬細胞吞噬後的存活率。綜合上述,P. mirabilis利用FhlA及QseF進行整體轉錄組的調控,使細菌可以迅速改變其轉錄組,以利在環境多變的泌尿道感染中生存。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:58:39Z (GMT). No. of bitstreams: 1
U0001-2610202116184800.pdf: 5512748 bytes, checksum: b4b80bef980fe0f7c0272e67704ae41f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 i 誌謝 ii 摘要 iii Abstract vi 目錄 ix 圖目錄 xiii 表目錄 xiv 第一章 緒論 1 第一節 奇異變形桿菌 (Proteus mirabilis)介紹 1 1.1 P. mirabilis的基本介紹 1 1.2 P. mirabilis與尿石症(urolithiasis) 1 1.3 P. mirabilis的細胞毒性與組織病理 1 1.4 P. mirabilis的毒性因子 2 1.4.1 鞭毛 (flagella) 3 1.4.2 生物膜 (biofilm) 3 1.4.3 尿素酶(urease) 3 1.4.4 溶血素 (haemolysin) 4 1.4.5 Proteus toxic agglutinin (Pta) 4 1.4.6 胺基酸分解酶 (deaminase) 5 第二節 RpoN (σN)與其相關enhancer binding proteins (EBPs)簡介 5 2.1 RpoN介紹 5 2.2 RpoN相關EBPs介紹 6 2.2.1 FhlA與formate hydrogenlyase complex 6 2.2.2 QseF 7 2.3 研究動機與目的 8 第二章 實驗材料與方法 9 第一節 實驗流程 9 第二節 實驗方法 9 2.1 實驗菌株與質體 9 2.2 實驗培養環境及培養基 11 2.3 生物資訊分析 11 2.3.1 生物資訊網站 11 2.3.2 生物資訊軟體 12 2.4 構築質體與突變株 (Construction of plasmids and P. mirabilis mutants) 13 2.4.1 構築突變株(Construction of mutant strain) 13 2.4.2 基因體DNA萃取(Genomic DNA extraction) 13 2.4.3 聚合酶連鎖反應(Polymerase chain reation,PCR) 14 2.4.4 限制酶酶切(Restriction enzyme digestion) 14 2.4.5 DNA純化(DNA purification) 14 2.4.5.1 直接純化DNA或PCR產物 14 2.4.5.2 切膠純化DNA或PCR產物 15 2.4.6 質體DNA萃取(Plasmid DNA extraction) 15 2.4.7 DNA黏合作用(DNA ligation) 15 2.4.7.1 DNA ligation 16 2.4.7.2 TA cloning 16 2.4.8 構築過度表達株(Construction of overexpression strain) 16 2.4.9 構築定點突變株(Construction of site-direct mutagenesis strain) 17 2.4.10 質體DNA轉型作用(Transformation) 17 2.4.10.1 電穿孔勝任細胞製備 17 2.4.10.2 電穿孔轉型 17 2.4.10.3 化學法勝任細胞製備 18 2.4.10.4 化學法轉型 18 2.4.11 細菌接合生殖(Conjugation) 18 2.4.12 南方墨點法(Southern blot analysis) 19 2.4.13 核酸定序與序列分析(Sequencing) 20 2.4.13.1 核酸定序 20 2.4.13.2 序列分析 20 2.5 基因表達 20 2.5.1 Promoter活性分析(Transcriptional reporter) 20 2.5.2 轉譯活性分析 (Translational reporter) 21 2.5.3 RNA萃取(RNA extraction) 22 2.5.4 RNA反轉錄(Reverse transcription) 22 2.5.5 同步定量PCR(Real-time PCR) 23 2.5.6 反轉錄PCR(RT-PCR) 23 2.6 蛋白質分析 23 2.6.1 鞭毛萃取(Flagellin extraction) 23 2.6.2 蛋白質濃度測定(Bio-Rad protein assay) 24 2.6.3 不連續膠體電泳(SDS-PAGE) 24 2.6.4 西方墨點法(Western blot) 25 2.7 抗藥性與壓力抗性 25 2.7.1 生長曲線(Growth curve) 25 2.7.2 最小抑制濃度(Minimum inhibitory concentration,MIC) 26 2.7.3 抗氧化壓力(Oxidative stress resistance) 26 2.7.4 抗酸性(Acid resistance) 26 2.8 生物膜 27 2.8.1 生物膜形成能力 (Biofilm formation ability) 27 2.8.2 時程生物膜形成能力 (Time-course biofilm formation ability) 27 2.8.3 細胞外多醣體測定 (Quantify exopolysaccharide (EPS)) 27 2.8.4 細胞外去氧核醣核酸測定 (Quantify extracellular DNA (eDNA)) 28 2.8.5 細胞疏水性 (Cell hydrophobicity) 28 2.8.6 細胞自聚合能力 (Cell autoaggregation) 28 2.9 移動性 29 2.9.1 表面移行(Swarming) 29 2.9.2 泳動(Swimming) 29 2.9.3 溶血素活性(Hemolysin activity) 29 2.10 尿素酶 29 2.10.1 尿素酶活性(Urease activity) 29 2.10.2 尿結石形成能力 (Urinary stone formation ability) 30 2.11 小鼠泌尿道感染 30 第三章 實驗結果 31 第一節 RpoN and EBPs in P. mirabilis 31 1.1 RpoN與EBPs突變株建構 31 1.2 生理、致病力及壓力抗性的影響 33 第二節 FhlA in P. mirabilis 35 2.1 FhlA在P. mirabilis N2中穩定表現不受氧氣及formate影響 35 2.2 FhlA在P. mirabilis N2調控的基因 37 2.3 Hydrogenase-4 (Hyf)在P. mirabilis的調控 39 2.4 RpoN-FhlA-Hyf增加P. mirabilis抗酸能力 41 2.5 RpoN-FhlA-Hyf促進P. mirabilis尿素酶活性 46 2.6 RpoN-FhlA-Hyf促進P. mirabilis 對ICR小鼠泌尿道的感染 49 第三節 QseF in P. mirabilis 50 3.1 QseF與sRNA GlmY對細菌移動性之調控 52 3.1.1 qseF與glmY共用promoter且受QseF調控 52 3.1.2 QseF與GlmY正向調控移動性相關表現型 54 3.1.3 QseF與GlmY正向調控flhDC與cheA表現並負向調控rcsB表現 56 3.1.4 GlmY與cheA mRNA interaction增加cheA mRNA translation效率 58 3.2 QseF對細菌壓力抗性與細胞毒性之調控 62 3.3 QseF對於生物膜形成之調控 64 3.3.1 QseF抑制生物膜初始貼附但為生物膜成熟所必須 64 3.3.2 QseF調控mrp, pmf以及cfa纖毛基因表現 65 3.3.3 QseF與ZapABCD 69 3.3.3.1 QseF促進蛋白酶活性 69 3.3.3.2 QseF正向調控蛋白酶相關操作組ZapABCD 70 3.3.3.3 QseF調控ZapABCD影響生物膜成熟而不是生物膜初始貼附 70 3.3.3.4 QseF不是在轉錄層級調控zapABCD表現 71 3.3.4 QseF與sRNA 73 3.3.4.1 QseF調控sRNA RprA以及RyhB3 73 3.3.4.2 sRNA RprA正向調控mrpA表現並促進P. mirabilis生物膜形成 73 3.3.4.3 sRNA RyhB3正向調控mrpA與zapA表現並促進P. mirabilis生物膜形成 74 3.3.5 QseF的訊號因子 76 第四章 結論 79 第五章 討論 80 第一節 FhlA在P. mirabilis泌尿道感染扮演的角色 80 第二節 FHL在P. mirabilis的表現 81 第三節 氫離子消耗型(proton consuming acid resistance)抗酸機制與尿素酶活性關係 82 第四節 QseF在P. mirabilis泌尿道感染扮演的角色 82 4.1 QseF調控sRNA GlmY與移動性 83 4.2 QseF調控壓力抗性 83 4.3 QseF調控生物膜形成 84 第五節 QseF、RNaseE adapter protein RapZ與sRNA的交互作用 87 參考文獻 89 附錄 100 附錄一、P. mirabilis致病因子 100 附錄二:P. mirabilis因具有許多致病因子,而導致上泌尿道的感染 101 附錄三:P. mirabilis在固體培養基上的表面移行 (swarming) 週期。 101 附錄四、A schematic model for formate hydrogenlyase 2 (FHL-2) complex 102 附錄五、Model of initial bladder colonization and cluster development by P. mirabilis. 102"
dc.language.isozh-TW
dc.title探討σ因子 RpoN的 兩個增強子結合蛋白FhlA以及QseF在奇異變形桿菌中所扮演的角色zh_TW
dc.titleThe roles of two enhancer binding proteins FhlA and QseF of sigma factor RpoN in uropathogenic Proteus mirabilisen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee賴信志(Hsin-Tsai Liu),楊翠青(Chih-Yang Tseng),邱浩傑,蘇伯琦
dc.subject.keyword尿道致病性奇異變形桿菌,FhlA,HyfG,尿素酶活性,QseF,RpoN,毒力因子,zh_TW
dc.subject.keyworduropathogenic Proteus mirabilis,FhlA,HyfG,urease activity,QseF,RpoN,virulence factor,en
dc.relation.page102
dc.identifier.doi10.6342/NTU202104245
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-2610202116184800.pdf5.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved