請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79330完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳世楠(Shih-Nan Chen) | |
| dc.contributor.author | Chia-Ying Kuo | en |
| dc.contributor.author | 郭嘉穎 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:58:15Z | - |
| dc.date.available | 2021-11-03 | |
| dc.date.available | 2022-11-23T08:58:15Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | Arai, M., Yamagata, T. (1994). Asymmetric evolution of eddies in rotating shallow water. Chaos, 4(2), 163-175. https://doi.org/10.1063/1.166001 Ball, F. K. (1963). Some general theorems concerning the finite motion of a shallow rotating liquid lying on a paraboloid. Journal of Fluid Mechanics, 17(2), 240-256. https://doi.org/10.1017/S0022112063001270 Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., Brown, B. P. (2020). Dedalus: A flexible framework for numerical simulations with spectral methods. Physical Review Research, 2(2), 023068. https://doi.org/10.1103/PhysRevResearch.2.023068 Chaigneau, A., Le Texier, M., Eldin, G., Grados, C., Pizarro, O. (2011). Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11). https://doi.org/10.1029/2011JC007134 Chassignet, E. P., Cushman-Roisin, B. (1991). On the influence of a lower layer on the propagation of nonlinear oceanic eddies. Journal of Physical Oceanography, 21(7), 939-957. https://doi.org/10.1175/1520-0485(1991)021<0939:Otioal>2.0.Co;2 Chelton, D. B., Schlax, M. G., Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Progress in oceanography, 91(2), 167-216. https://doi.org/10.1016/j.pocean.2011.01.002 Chelton, D. B., Schlax, M. G., Samelson, R. M., de Szoeke, R. A. (2007). Global observations of large oceanic eddies. Geophysical Research Letters, 34(15). https://doi.org/10.1029/2007gl030812 Couston, L.-A., Lecoanet, D., Favier, B., Le Bars, M. (2020). Shape and size of large-scale vortices: A generic fluid pattern in geophysical fluid dynamics. Physical Review Research, 2(2), 023143. https://doi.org/10.1103/PhysRevResearch.2.023143 Cushman-Roisin, B., Tang, B., Chassignet, E. P. (1990). Westward motion of mesoscale eddies. Journal of Physical Oceanography, 20(5), 758-768. https://doi.org/10.1175/1520-0485(1990)020<0758:Wmome>2.0.Co;2 Davey, M. K., Killworth, P. D. (1984). Isolated waves and eddies in a shallow-water model. Journal of Physical Oceanography, 14(6), 1047-1064. https://doi.org/10.1175/1520-0485(1984)014<1047:Iwaeia>2.0.Co;2 Dong, C., McWilliams, J. C., Liu, Y., Chen, D. (2014). Global heat and salt transports by eddy movement. Nature communications, 5(1), 1-6. https://doi.org/10.1038/ncomms4294 Early, J. J., Samelson, R. M., Chelton, D. B. (2011). The evolution and propagation of quasigeostrophic ocean eddies. Journal of Physical Oceanography, 41(8), 1535-1555. https://doi.org/10.1175/2011jpo4601.1 Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., Kumar, V. (2015). A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific data, 2(1), 1-16. https://doi.org/10.1038/sdata.2015.28 Flierl, G. R. (1977). The Application of Linear Quasigeostrophic Dynamics to Gulf Stream Rings. Journal of Physical Oceanography, 7(3), 365-379. https://doi.org/10.1175/1520-0485(1977)007<0365:Taolqd>2.0.Co;2 Flor, J. B., Eames, I. (2002). Dynamics of monopolar vortices on a topographic beta-plane. Journal of Fluid Mechanics, 456, 353-376. https://doi.org/10.1017/S0022112001007728 Killworth, P. D. (1983). On the motion of isolated lenses on a beta-plane. Journal of Physical Oceanography, 13(3), 368-376. https://doi.org/10.1175/1520-0485(1983)013<0368:Otmoil>2.0.Co;2 Klocker, A., Abernathey, R. (2014). Global patterns of mesoscale eddy properties and diffusivities. Journal of Physical Oceanography, 44(3), 1030-1046. https://doi.org/10.1175/JPO-D-13-0159.1 Korotaev, G. K. (1997). Radiating vortices in geophysical fluid dynamics. Surveys in Geophysics, 18(6), 567-619. https://doi.org/10.1023/A:1006583017505 Korotaev, G. K., Fedotov, A. B. (1994). Dynamics of an isolated barotropic eddy on a beta-plane. Journal of Fluid Mechanics, 264, 277-301. https://doi.org/10.1017/S0022112094000662 McDonald, N. R. (1998). The decay of cyclonic eddies by Rossby wave radiation. Journal of Fluid Mechanics, 361, 237-252. https://doi.org/10.1017/S0022112098008696 McDonald, N. R. (1999). The motion of geophysical vortices. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1763), 3427-3444. https://doi.org/10.1098/rsta.1999.0501 McWilliams, J. C., Flierl, G. R. (1979). On the evolution of isolated, nonlinear vortices. Journal of Physical Oceanography, 9(6), 1155-1182. https://doi.org/10.1175/1520-0485(1979)009<1155:Oteoin>2.0.Co;2 Mied, R. P., Lindemann, G. J. (1979). The propagation and evolution of cyclonic Gulf Stream rings. Journal of Physical Oceanography, 9(6), 1183-1206. https://doi.org/10.1175/1520-0485(1979)009<1183:Tpaeoc>2.0.Co;2 Nof, D. (1983). On the migration of isolated eddies with application to gulf-stream rings. Journal of Marine Research, 41(3), 399-425. https://doi.org/10.1357/002224083788519687 Nycander, J. (2001). Drift velocity of radiating quasigeostrophic vortices. Journal of Physical Oceanography, 31(8), 2178-2185. https://doi.org/10.1175/1520-0485(2001)031<2178:Dvorqv>2.0.Co;2 Stegner, A., Dritschel, D. G. (2000). A numerical investigation of the stability of isolated shallow water vortices. Journal of Physical Oceanography, 30(10), 2562-2573. https://doi.org/10.1175/1520-0485(2000)030<2562:Aniots>2.0.Co;2 Stone, J. M., Tomida, K., White, C. J., Felker, K. G. (2020). The Athena++ adaptive mesh Refinement framework: Design and magnetohydrodynamic solvers. The Astrophysical Journal Supplement Series, 249(1), 4. https://doi.org/10.3847/1538-4365/ab929b Zhang, Z., Wang, W., Qiu, B. (2014). Oceanic mass transport by mesoscale eddies. Science, 345(6194), 322-324. https://doi.org/10.1126/science.1252418 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79330 | - |
| dc.description.abstract | Chelton et al. (2011) 以衛星高度計資料分析中尺度渦旋的特徵與現象,分析結果顯示,氣旋式渦旋(cyclonic eddies,下稱低壓渦旋)與反氣旋式渦旋(anticyclonic eddies,下稱高壓渦旋)皆向西傳遞,且傳遞速度趨近於羅士比長波速度(long Rossby wave speed,β〖L_d〗^2)。高壓渦旋的生命期與傳遞距離皆較低壓渦旋長,顯示渦旋傳遞性質存在不對稱性。本研究使用減重力淺水方程模式(reduced-gravity shallow-water model)研究渦旋傳遞的不對稱性,並特別針對渦旋的東西向傳遞速度做探討。具體而言,我們在模式中測試了Davey and Killworth (1984) (下稱DK84)對於渦旋傳遞速度的理論推導,其中高壓渦旋傳遞速度會比 β〖L_d〗^2 快,低壓渦旋則比 β〖L_d〗^2 慢。理論中透過 F_β 與 F_C 的力平衡關係解釋渦旋傳遞速度:F_β 為渦旋質量異常(mass anomaly)內流體運動產生的南北向科氏加速度(即beta效應)積分,F_C 為渦漩質量異常向西傳遞所產生的科氏力。 模擬結果顯示,高壓渦旋和低壓渦旋均向西傳遞,且傳遞速度與 β〖L_d〗^2 接近,與觀測結果相符。β〖L_d〗^2 的傳遞速度對應於 F_β 中,渦旋旋轉速度為純地轉流速,而高度異常(height anomaly)為零。模擬中高壓渦旋與低壓渦旋的傳遞速度確實存在不對稱:高壓渦旋傳遞比 β〖L_d〗^2 快,低壓渦旋則比 β〖L_d〗^2 慢,定性上與DK84理論結果相符。渦旋傳遞速度與 β〖L_d〗^2 的偏差可以超過30%。定量上,高壓渦旋傳遞速度區間和DK84理論預測結果相符,低壓渦旋卻與理論有很大的偏差。進一步分析發現,高壓渦旋傳遞速度大於 β〖L_d〗^2 的主要原因為:高壓渦旋的高度異常和其對應的地轉流速能使 F_β 增強,其傳遞速度與 β〖L_d〗^2 的偏差隨著渦旋高度異常相對於平均水深之無因次化參數增加而增加。另一方面,DK84理論則高估了低壓渦旋的傳遞速度,模擬中低壓渦旋傳遞速度亦與渦旋高度異常無關。在研究中發現,低壓渦旋的質量散失和隨著渦旋傳遞輻射羅士比波的現象,可能導致低壓渦旋的能量散失,從而減弱低壓渦旋的傳遞速度。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:58:15Z (GMT). No. of bitstreams: 1 U0001-2710202109250300.pdf: 3858630 bytes, checksum: 65f4b4290baa8946111705a0a6263c41 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書.....# 致謝.....i Abstract.....ii 摘要.....iv 目錄.....vi 圖目錄.....viii 表目錄.....xii 第一章 緒論.....1 第二章 Davey and Killworth (1984) 理論.....7 2.1 理論方程式推導.....7 2.2 渦旋速度不對稱性.....9 第三章 研究方法.....12 3.1 數值實驗設計.....12 3.1.1 準地轉方程模擬.....13 3.1.2 淺水方程模擬.....14 3.2 渦旋東西向傳遞速度計算.....16 3.3 DK84理論之質心速度在模式中的計算.....17 第四章 數值模擬結果.....21 4.1 模式檢驗.....21 4.2 準地轉方程模擬結果.....22 4.3 淺水方程模擬結果.....24 4.4 淺水方程模擬與DK84理論比較.....26 第五章 討論.....29 5.1 渦旋向西傳遞速度趨近於羅士比長波速度之解釋.....29 5.1.1 準地轉位渦方程一階近似.....29 5.1.2 渦旋位渦守恆與剖面幾何近似.....30 5.1.3 DK84理論質心速度近似.....32 5.2 影響高壓渦旋與低壓渦旋速度不對稱性之因素.....34 5.2.1 Beta force理論解釋.....34 5.2.2 模式Beta force分解計算結果.....37 5.3 低壓渦旋與理論差距的推測原因.....39 第六章 結論.....42 附錄A Dedalus介紹.....44 參考文獻.....46 | |
| dc.language.iso | zh-TW | |
| dc.title | Beta平面上中尺度渦旋傳遞的不對稱性——以淺水方程模擬探討 | zh_TW |
| dc.title | Asymmetries in Mesoscale Eddy Propagation on a Beta-Plane: Perspective from Shallow-Water Simulations | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹森(Hsin-Tsai Liu),郭鴻基(Chih-Yang Tseng) | |
| dc.subject.keyword | 中尺度渦旋,渦旋傳遞不對稱性,羅士比長波速度,淺水方程模擬,beta 效應, | zh_TW |
| dc.subject.keyword | mesoscale eddies,asymmetric eddy propagation,long Rossby wave speed,shallow-water model,beta effect, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU202104309 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2710202109250300.pdf | 3.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
