請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79329完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武 | zh_TW |
| dc.contributor.advisor | Shiu-Wu Chau | en |
| dc.contributor.author | 邱勝瑄 | zh_TW |
| dc.contributor.author | Sheng-Hsuan Chiu | en |
| dc.date.accessioned | 2022-11-23T08:58:14Z | - |
| dc.date.available | 2024-05-30 | - |
| dc.date.copyright | 2021-11-04 | - |
| dc.date.issued | 2021 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] B. Selvan, K. Ramachandran, K. Sreekumar, T. Thiyagarajan, and P. Ananthapadmanabhan, "Numerical and experimental studies on DC plasma spray torch," Vacuum, vol. 84, no. 4, pp. 444-452, 2009.
[2] 徐少駒,在不同背壓條件下非傳輸型井式陰極直流空氣電漿火炬內部流場模擬,國立臺灣科技大學機械工程系碩士論文,2013。 [3] M. Hur and S. H. Hong, "Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod-and well-type cathodes," Journal of Physics D: Applied Physics, vol. 35, no. 16, p. 1946, 2002. [4] K. S. Kim, J. M. Park, S. Choi, J. Kim, and S. H. Hong, "Comparative study of two-and three-dimensional modeling on arc discharge phenomena inside a thermal plasma torch with hollow electrodes," Physics of Plasmas, vol. 15, no. 2, p. 023501, 2008. [5] Z. Pan, L. Ye, S. Qian, Q. Sun, C. Wang, T. Ye, and W. Xia, "Comparison of Reynolds average Navier–Stokes turbulence models in numerical simulations of the DC arc plasma torch," Plasma Science and Technology, vol. 22, no. 2, 2020. [6] J. Bauchire, J. Gonzalez, and A. Gleizes, "Modeling of a DC plasma torch in laminar and turbulent flow," Plasma Chemistry and Plasma Processing, vol. 17, no. 4, pp. 409-432, 1997. [7] S. W. Chau, C. M. Tai, and S. H. Chen, "Nonequilibrium modeling of steam plasma in a nontransferred direct-current torch," IEEE Transactions on Plasma Science, vol. 42, no. 12, pp. 3797-3808, 2014. [8] V. Frolov, I. Murashov, and D. Ivanov, "Special aspects of dc air plasma torch’s operating modes under turbulent flow conditions," Plasma Physics and Technology Journal, vol. 2, pp. 129-133, 2015. [9] D. Scott, P. Kovitya, and G. Haddad, "Temperatures in the plume of a dc plasma torch," Journal of Applied Physics, vol. 66, no. 11, pp. 5232-5239, 1989. [10] J. Coudert, M. Planche, and P. Fauchais, "Characterization of dc plasma torch voltage fluctuations," Plasma Chemistry and Plasma Processing, vol. 16, no. 1, pp. S211-S227, 1995. [11] B. Selvan and K. Ramachandran, "Comparisons between two different three-dimensional arc plasma torch simulations," Journal of Thermal Spray Technology, vol. 18, no. 5, pp. 846-857, 2009. [12] K. S. Kim, J. M. Park, S. Choi, J. Kim, and S. H. Hong, "Enthalpy probe measurements and three-dimensional modelling on air plasma jets generated by a non-transferred plasma torch with hollow electrodes," Journal of Physics D: Applied Physics, vol. 41, no. 6, p. 065201, 2008. [13] R. Huang, H. Fukanuma, Y. Uesugi, and Y. Tanaka, "An improved local thermal equilibrium model of DC arc plasma torch," IEEE Transactions on Plasma Science, vol. 39, no. 10, pp. 1974-1982, 2011. [14] J. Trelles, J. Heberlein, and E. Pfender, "Non-equilibrium modelling of arc plasma torches," Journal of Physics D: Applied Physics, vol. 40, no. 19, p. 5937, 2007. [15] J. M. Park, K. S. Kim, T. H. Hwang, and S. H. Hong, "Three-dimensional modeling of arc root rotation by external magnetic field in nontransferred thermal plasma torches," IEEE Transactions on Plasma Science, vol. 32, no. 2, pp. 479-487, 2004. [16] J. L. Dorier, M. Gindrat, C. Hollenstein, A. Salito, M. Loch, and G. Barbezat, "Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch," IEEE Transactions on Plasma Science, vol. 29, no. 3, pp. 494-501, 2001. [17] Z. Duan and J. Heberlein, "Arc instabilities in a plasma spray torch," Journal of Thermal Spray Technology, vol. 11, no. 1, pp. 44-51, 2002. [18] A. Gleizes, J. J. Gonzalez, and P. Freton, "Thermal plasma modelling," Journal of Physics D: Applied Physics, vol. 38, no. 9, p. R153, 2005. [19] M. I. Boulos, P. Fauchais, and E. Pfender, Thermal plasmas: fundamentals and applications. Springer Science & Business Media, 2013. [20] V. Rat, A. Murphy, J. Aubreton, M.-F. Elchinger, and P. Fauchais, "Treatment of non-equilibrium phenomena in thermal plasma flows," Journal of Physics D: Applied Physics, vol. 41, no. 18, p. 183001, 2008. [21] M. J. Ni, R. Munipalli, N. B. Morley, P. Huang, and M. A. Abdou, "Validation case results for 2D and 3D MHD simulations," Fusion Science and Technology, vol. 52, no. 3, pp. 587-594, 2007. [22] L. Niemeyer and K. Ragaller, "Development of turbulence by the interaction of gas flow with plasmas," Zeitschrift für Naturforschung A, vol. 28, no. 8, pp. 1281-1289, 1973. [23] M. Shigeta, "Turbulence modelling of thermal plasma flows," Journal of Physics D: Applied Physics, vol. 49, no. 49, 2016. [24] F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, vol. 32, no. 8, pp. 1598-1605, 1994. [25] D. C. Wilcox, Turbulence modeling for CFD. DCW industries La Canada, CA, 1998. [26] B. E. Launder and D. B. Spalding, "Lectures in mathematical models of turbulence," 1972. [27] J. l. Xu, H. Y. Ma, and Y. N. Huang, "Nonlinear turbulence models for predicting strong curvature effects," Applied Mathematics and Mechanics, vol. 29, no. 1, pp. 31-42, 2008. [28] P. Durbin, "On the k-ε stagnation point anomaly," Int. J. Heat and Fluid Flow, vol. 17, pp. 9-90, 1996. [29] S. Kenjereš, S. Gunarjo, and K. Hanjalić, "Contribution to elliptic relaxation modelling of turbulent natural and mixed convection," International Journal of Heat and Fluid Flow, vol. 26, no. 4, pp. 569-586, 2005. [30] R. Bolot, V. Monin, M. Imbert, and C. Coddet, "Mathematical modeling of a plasma jet impinging on a flat structure," in Thermal Spray: Meeting the Challenges of the 21st Century, 1998, pp. 439-444. [31] T. Craft, A. Gerasimov, H. Iacovides, and B. Launder, "Progress in the generalization of wall-function treatments," International Journal of Heat and Fluid Flow, vol. 23, no. 2, pp. 148-160, 2002. [32] J. H. Ferziger, M. Perić, and R. L. Street, Computational methods for fluid dynamics. Springer, 2002. [33] E. Fares and W. Schröder, "A differential equation for approximate wall distance," International Journal for Numerical Methods in Fluids, vol. 39, no. 8, pp. 743-762, 2002. [34] P. G. Tucker, "Differential equation-based wall distance computation for DES and RANS," Journal of Computational Physics, vol. 190, no. 1, pp. 229-248, 2003. [35] F. Moukalled, L. Mangani, and M. Darwish, The finite volume method in computational fluid dynamics. Springer, 2016. [36] P. G. Tucker, C. L. Rumsey, P. R. Spalart, R. E. Bartels, and R. T. Biedron, "Computations of wall distances based on differential equations," AIAA Journal, vol. 43, no. 3, pp. 539-549, 2005. [37] Plasma Taiwan Innovation Corporation. http://www.plasmati.com.tw (accessed 10/27, 2021). [38] D. L. Lin, S. H. Chen, and C. C. Tzeng, "Characteristics of a Non-Transferred Plasma Torch Operated in a Positive Pressure Environment", INER-8651R, 2011. (in Chinese) [39] M. Benilov and A. Marotta, "A model of the cathode region of atmospheric pressure arcs," Journal of Physics D: Applied Physics, vol. 28, no. 9, p. 1869, 1995. [40] Y. P. Raizer and J. E. Allen, Gas discharge physics. Springer Berlin, 1997. [41] C. Kimblin, "Erosion and ionization in the cathode spot regions of vacuum arcs," Journal of Applied Physics, vol. 44, no. 7, pp. 3074-3081, 1973. [42] V. Aubrecht and M. Bartlova, "Net emission coefficients of radiation in air and SF6 thermal plasmas," Plasma Chemistry and Plasma Processing, vol. 29, no. 2, pp. 131-147, 2009. [43] L. F. Richardson, "The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam," Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 210, no. 459-470, pp. 307-357, 1911. [44] K. Hsu, K. Etemadi, and E. Pfender, "Study of the free‐burning high‐intensity argon arc," Journal of applied physics, vol. 54, no. 3, pp. 1293-1301, 1983. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79329 | - |
| dc.description.abstract | 本研究使用有限體積法離散基於連續方程式、動量方程式、能量方程式、電磁場方程式及SST k-ω紊流模型的磁流體動力方程組,建立非傳輸型井式直流電漿火炬的三維暫態數學模型,並開發流場分析程式碼。本研究的火炬長690 mm,火炬半徑11 mm,模擬分析工作壓力為1大氣壓條件下,流量範圍為100 SLM至200 SLM間以及工作電流為100 A至200 A 間的空氣電漿火炬特性,並假定陰極弧根以1000 Hz頻率環繞火炬內壁移動。本研究利用迴歸分析計算結果顯示電弧長度正比於工作電流的-1.008次方以及入流流量的0.295次方;出口平均軸向速度正比於工作電流的-0.754次方以及入流流量的1.691次方;出口平均旋向速度正比於工作電流的-2.061次方以及入流流量的3.491次方;出口平均溫度正比於工作電流的-0.415次方以及入流流量的0.427次方。 | zh_TW |
| dc.description.abstract | This study develops a numerical framework where a finite volume method is used to discretize the MHD equations consisting of the continuity, momentum, energy, Maxwell's equations and the SST k-ω turbulence model. A three-dimensional unsteady model is established to simulate a non-transferred direct-current plasma torch equipped with well-type cathode. The investigated torch has a length of 690 mm and a radius of 11 mm. The plasma torch flow is calculated at an inlet flow rate ranging from 100 SLM to 200 SLM and a working current ranging from 100 A to 200 A. The working pressure is 1 atm where the cathode spot is assumed to have a circulation frequency of 1000 Hz. With the help of a regression analysis, the arc length is predicted to grow with I^(-1.008) and Q^0.295; the mean axial velocity at the outlet is predicted to grow with I^(-0.754) and Q^1.691; the mean tangential velocity at the outlet is predicted to grow with I^(-2.061) and Q^3.491; the mean temperature at the outlet is predicted to grow with I^(-0.415) and Q^0.427. | en |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:58:14Z (GMT). No. of bitstreams: 1 U0001-2710202110133000.pdf: 8638523 bytes, checksum: 7c3247665ff7f6cfc3b97a82367da8cd (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Contents
Nomenclature v Acronyms v Latin Symbols vi Greek Symbols xi List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 Chapter 2 Method 7 2-1 Governing Equations 7 2-1-1 Magnetohydrodynamic Equations 7 2-1-2 Boundary Conditions 11 (a) Inlet 11 (b) Outlet 11 (c) Wall 12 (d) Symmetry Plane 13 (e) Cathode 13 (f) Anode 14 2-2 Numerical Method 16 2-2-1 Finite Volume Method 16 (a) Transient Term 18 (b) Convection Term 18 (c) Diffusion Term 19 2-2-2 Pressure-correction Equation 21 2-2-3 Wall Distance Calculation 24 2-2-4 Solution Procedure 25 Chapter 3 Study Case 29 3-1 Description of Experiment 29 3-2 Case Description 30 3-3 Computational Domain and Boundary Conditions 31 (a) Cathode 34 (b) Anode 35 3-4 Plasma Properties 38 3-5 Mesh 41 3-6 Grid Dependency 44 Chapter 4 Result and Discussion 48 4-1 Validation 48 4-2 Working Current 52 4-2-1 Time-Averaged Analysis 52 4-2-2 Time History Analysis 62 4-3 Inlet Flow Rate 71 4-3-1 Time-Averaged Analysis 71 4-3-2 Time History Analysis 80 4-4 Discussion 86 Chapter 5 Conclusions and Future Works 95 Appendix 97 References 99 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 直流電漿火炬 | zh_TW |
| dc.subject | 暫態 | zh_TW |
| dc.subject | 三維 | zh_TW |
| dc.subject | 磁流體模型 | zh_TW |
| dc.subject | 空氣電漿 | zh_TW |
| dc.subject | 井式陰極 | zh_TW |
| dc.subject | WTC | en |
| dc.subject | DC Plasma Torch | en |
| dc.subject | Air Plasma | en |
| dc.subject | Magnetohydrodynamic Model | en |
| dc.subject | Three-dimensional | en |
| dc.subject | Unsteady | en |
| dc.title | 三維暫態直流電漿火炬模擬 | zh_TW |
| dc.title | Three-Dimensional Unsteady Simulation of Direct Current Plasma Torch | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 109-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳宗信;陳孝輝;魏大欽;林洸銓;戴璽恆 | zh_TW |
| dc.contributor.oralexamcommittee | Zhong-Xing Wu;Xiao-Hui Chen;Ta-Chin Wei;Kuang C. Lin;Hsi-Heng Dai | en |
| dc.subject.keyword | 直流電漿火炬,井式陰極,空氣電漿,磁流體模型,三維,暫態, | zh_TW |
| dc.subject.keyword | DC Plasma Torch,WTC,Air Plasma,Magnetohydrodynamic Model,Three-dimensional,Unsteady, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202104312 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2021-10-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-2.pdf | 10.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
