請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79324完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃筱鈞(Hsiao-Chun Huang) | |
| dc.contributor.author | Hao-Chun Fan | en |
| dc.contributor.author | 范浩俊 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:58:09Z | - |
| dc.date.available | 2021-11-04 | |
| dc.date.available | 2022-11-23T08:58:09Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-29 | |
| dc.identifier.citation | Abraham, W.-R., Strömpl, C., Meyer, H., Lindholst, S., Moore, E. R., Christ, R., Vancanneyt, M., Tindall, B. J., Bennasar, A., Smit, J., Tesar, M. (1999). Phylog-eny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. International Journal of Systematic and Evolutionary Microbiology, 49(3), 1053–1073. https://doi.org/10.1099/00207713-49-3-1053 Aguilaniu, H., Gustafsson, L., Rigoulet, M., Nyström, T., (2003). Asymmetric Inher-itance of Oxidatively Damaged Proteins During Cytokinesis. Science, 299(5613), 1751–1753. https://doi.org/10.1126/science.1080418 Amos, M. (2014). Population-based microbial computing: a third wave of synthetic bi-ology? International Journal of General Systems, 43(7), 770–782. https://doi.org/10.1080/03081079.2014.921001 Anderson, J. C., Voigt, C. A., Arkin, A. P. (2007). Environmental signal integration by a modular AND gate. Molecular Systems Biology, 3(1), 133. https://doi.org/10.1038/msb4100173 Barák, I., Muchová, K., Labajová, N. (2019). Asymmetric cell division during Bacil-lus subtilis sporulation. Future Microbiology, 14(4), 353–363. https://doi.org/10.2217/fmb-2018-0338 Bashor, C. J., Helman, N. C., Yan, S., Lim, W. A. (2008). Using Engineered Scaffold Interactions to Reshape MAP Kinase Pathway Signaling Dynamics. Science, 319(5869), 1539–1543. https://doi.org/10.1126/science.1151153 Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., Weiss, R. (2005). A synthetic multicellular system for programmed pattern formation. Nature, 434(7037), 1130–1134. https://doi.org/10.1038/nature03461 Bayer, T. S., Smolke, C. D. (2005). Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnology, 23(3), 337–343. https://doi.org/10.1038/nbt1069 Becskei, A., Serrano, L. (2000). Engineering stability in gene networks by autoregu-lation. Nature, 405(6786), 590–593. https://doi.org/10.1038/35014651 Becskei, A., Séraphin, B., Serrano, L. (2001). Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. The EMBO Journal, 20(10), 2528–2535. https://doi.org/10.1093/emboj/20.10.2528 Benner, S. A., Sismour, A. M. (2005). Synthetic biology. Nature Reviews Genetics, 6(7), 533–543. https://doi.org/10.1038/nrg1637 Ben-Yehuda, S., Losick, R. (2002). Asymmetric Cell Division in B. subtilis Involves a Spiral-like Intermediate of the Cytokinetic Protein FtsZ. Cell, 109(2), 257–266. https://doi.org/10.1016/s0092-8674(02)00698-0 Bowman, G. R., Comolli, L. R., Zhu, J., Eckart, M., Koenig, M., Downing, K. H., Moerner, W. E., Earnest, T., Shapiro, L. (2008). A Polymeric Protein Anchors the Chromosomal Origin/ParB Complex at a Bacterial Cell Pole. Cell, 134(6), 945–955. https://doi.org/10.1016/j.cell.2008.07.015 Chau, A. H., Walter, J. M., Gerardin, J., Tang, C., Lim, W. A. (2012). Designing Syn-thetic Regulatory Networks Capable of Self-Organizing Cell Polarization. Cell, 151(2), 320–332. https://doi.org/10.1016/j.cell.2012.08.040 Cheeks, R. J., Canman, J. C., Gabriel, W. N., Meyer, N., Strome, S., Goldstein, B. (2004). C. elegans PAR Proteins Function by Mobilizing and Stabilizing Asym-metrically Localized Protein Complexes. Current Biology, 14(10), 851–862. https://doi.org/10.1016/j.cub.2004.05.022 Chiou, J. -G., Balasubramanian, M. K., Lew, D. J. (2017). Cell Polarity in Yeast. An-nual Review of Cell and Developmental Biology, 33(1), 77–101. https://doi.org/10.1146/annurev-cellbio-100616-060856 Conklin, E. G. (1905). The organization and cell-lineage of the ascidian egg. Journal of the Academy of Natural Sciences of Philadelphia 12(1). https://doi.org/10.5962/bhl.title.4801 Crymes, W. B., Zhang, D., Ely, B. (1999). Regulation of podJ Expression during the Caulobacter crescentus Cell Cycle. Journal of Bacteriology, 181(13), 3967–3973. https://doi.org/10.1128/jb.181.13.3967-3973.1999 Curtis, P. D., Brun, Y. V. (2010). Getting in the Loop: Regulation of Development in Caulobacter crescentus. Microbiology and Molecular Biology Reviews, 74(1), 13–41. https://doi.org/10.1128/mmbr.00040-09 Domian, I. J., Quon, K. C., Shapiro, L. (1997). Cell Type-Specific Phosphorylation and Proteolysis of a Transcriptional Regulator Controls the G1-to-S Transition in a Bacterial Cell Cycle. Cell, 90(3), 415–424. https://doi.org/10.1016/s0092-8674(00)80502-4 Domian, I. J., Reisenauer, A., Shapiro, L. (1999). Feedback control of a master bacte-rial cell-cycle regulator. Proceedings of the National Academy of Sciences, 96(12), 6648–6653. https://doi.org/10.1073/pnas.96.12.6648 Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Old-field, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nissen, M. S., Reeves, R., Kang, C. H., Kissinger, C. R., Bailey, R. W., Griswold, M. D., Chiu, W., Garner, E. C., Obradovic, Z. (2001). Intrinsically disordered protein. Jour-nal of Molecular Graphics and Modelling, 19(1), 26–59. https://doi.org/10.1016/s1093-3263(00)00138-8 Dyson, H. J. (2012). Roles of intrinsic disorder in protein–nucleic acid interactions. Mo-lecular BioSystems, 8(1), 97–104. https://doi.org/10.1039/c1mb05258f Ebersbach, G., Briegel, A., Jensen, G. J., Jacobs-Wagner, C. (2008). A Self-Associating Protein Critical for Chromosome Attachment, Division, and Polar Or-ganization in Caulobacter. Cell, 134(6), 956–968. https://doi.org/10.1016/j.cell.2008.07.016 Elkouby, Y. M., Mullins, M. C. (2017). Coordination of cellular differentiation, polar-ity, mitosis and meiosis – New findings from early vertebrate oogenesis. Devel-opmental Biology, 430(2), 275–287. https://doi.org/10.1016/j.ydbio.2017.06.029 Elowitz, M. B., Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335–338. https://doi.org/10.1038/35002125 Ely, B., Gerardot, C. J. (1988). Use of pulsed-field-gradient gel electrophoresis to construct a physical map of the Caulobacter crescentus genome. Gene, 68(2), 323–333. https://doi.org/10.1016/0378-1119(88)90035-2 Etienne-Manneville, S. (2008). Polarity proteins in migration and invasion. Oncogene, 27(55), 6970–6980. https://doi.org/10.1038/onc.2008.347 Fichelson, P., Huynh, J.-R. (2007). Asymmetric Divisions of Germline Cells. Pro-gress in Molecular and Subcellular Biology, 97–120. https://doi.org/10.1007/978-3-540-69161-7_5 Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., Collins, J. J. (2009). Syn-thetic Gene Networks That Count. Science, 324(5931), 1199–1202. https://doi.org/10.1126/science.1172005 Gardner, T. S., Cantor, C. R., Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339–342. https://doi.org/10.1038/35002131 Goehring, N. W. (2014). PAR polarity: From complexity to design principles. Experi-mental Cell Research, 328(2), 258–266. https://doi.org/10.1016/j.yexcr.2014.08.009 Gönczy, P., Rose, L. S. (2005). Asymmetric cell division and axis formation in the embryo. WormBook, 1–20. https://doi.org/10.1895/wormbook.1.30.1 Guet, C. C., Elowitz, M. B., Hsing, W., Leibler S. (2002). Combinatorial Synthesis of Genetic Networks. Science, 296(5572), 1466–1470. https://doi.org/10.1126/science.1067407 Heng, B. C., Fussenegger, M. (2013). Design and Application of Synthetic Biology Devices for Therapy. Synthetic Biology, 159–181. https://doi.org/10.1016/b978-0-12-394430-6.00009-1 Henrici, A. T., Johnson, D. E. (1935). Studies of Freshwater Bacteria. Journal of Bac-teriology, 30(1), 61–93. https://doi.org/10.1128/jb.30.1.61-93.1935 Higuchi-Sanabria, R., Pernice, W. M. A., Vevea, J. D., Alessi Wolken, D. M., Boldogh, I. R., Pon, L. A. (2014). Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Research, 14(8), 1133–1146. https://doi.org/10.1111/1567-1364.12216 Hinz, A. J., Larson, D. E., Smith, C. S., Brun, Y. V. (2003). The Caulobacter crescen-tus polar organelle development protein PodJ is differentially localized and is re-quired for polar targeting of the PleC development regulator. Molecular Microbi-ology, 47(4), 929–941. https://doi.org/10.1046/j.1365-2958.2003.03349.x Holmes, J. A., Follett, S. E., Wang, H., Meadows, C. P., Varga, K., Bowman, G. R. (2016). Caulobacter PopZ forms an intrinsically disordered hub in organizing bacterial cell poles. Proceedings of the National Academy of Sciences, 113(44), 12490–12495. https://doi.org/10.1073/pnas.1602380113 Hwang, S.-Y., Rose, L. S. (2010). Control of asymmetric cell division in early C. ele-gans embryogenesis: teaming-up translational repression and protein degradation. BMB Reports, 43(2), 69–78. https://doi.org/10.5483/bmbrep.2010.43.2.069 Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., Collins, J. J. (2004). Engineered riboregulators enable post-transcriptional control of gene ex-pression. Nature Biotechnology, 22(7), 841–847. https://doi.org/10.1038/nbt986 Inagaki, F., Takai, K., Hirayama, H., Yamato, Y., Nealson, K. H., Horikoshi, K. (2003). Distribution and phylogenetic diversity of the subsurface microbial com-munity in a Japanese epithermal gold mine. Extremophiles, 7(4), 307–317. https://doi.org/10.1007/s00792-003-0324-9 Kozubowski, L., Saito, K., Johnson, J. M., Howell, A. S., Zyla, T. R., Lew, D. J. (2008). Symmetry-Breaking Polarization Driven by a Cdc42p GEF-PAK Com-plex. Current Biology, 18(22), 1719–1726. https://doi.org/10.1016/j.cub.2008.09.060 Labie, C., Bouché, F., Bouché, J. P. (1990). Minicell-forming mutants of Escherichia coli: suppression of both DicB- and MinD-dependent division inhibition by inac-tivation of the minC gene product. Journal of Bacteriology, 172(10), 5852–5855. https://doi.org/10.1128/jb.172.10.5852-5855.1990 Lang, C. F., Munro, E. (2017). The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development, 144(19), 3405–3416. https://doi.org/10.1242/dev.139063 Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M., Shapiro, L. (2000). Global Analysis of the Genetic Network Controlling a Bacterial Cell Cycle. Sci-ence, 290(5499), 2144–2148. https://doi.org/10.1126/science.290.5499.2144 Laloux, G., Jacobs-Wagner, C. (2013). Spatiotemporal control of POPZ localization through cell cycle–coupled multimerization. Journal of Cell Biology, 201(6), 827–841. https://doi.org/10.1083/jcb.201303036 Lawler, M. L., Larson, D. E., Hinz, A. J., Klein, D., Brun, Y. V. (2006). Dissection of functional domains of the polar localization factor PodJ in Caulobacter crescen-tus. Molecular Microbiology, 59(1), 301–316. https://doi.org/10.1111/j.1365-2958.2005.04935.x Lim, S. A., Wells, J. A. (2020). Split enzymes: Design principles and strategy. Meth-ods in Enzymology, 644, 275–296. https://doi.org/10.1016/bs.mie.2020.05.001 Lin, D.-W., Liu, Y., Lee, Y.-Q., Yang, P.-J., Ho, C.-T., Hong, J.-C., Hsiao, J.-C., Liao, D.-C., Liang, A.-J., Hung, T.-C., Chen, Y.-C., Tu, H.-L., Hsu, C.-P., Huang, H.-C. (2021). Construction of intracellular asymmetry and asymmetric division in Escherichia coli. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21135-1 Liu, Y. (2015). A synthetic biology platform for polarized protein scaffold in Escherich-ia coli [Master's thesis, University of Maryland]. Airiti Library. Macía, J., Posas, F., Solé, R. V. (2012). Distributed computation: the new wave of synthetic biology devices. Trends in Biotechnology, 30(6), 342–349. https://doi.org/10.1016/j.tibtech.2012.03.006 McAdams, H., Shapiro, L. (1995). Circuit simulation of genetic networks. Science, 269(5224), 650–656. https://doi.org/10.1126/science.7624793 Meinhardt, H. (1999). Orientation of chemotactic cells and growth cones: models and mechanisms. Journal of Cell Science, 112(17), 2867–2874. https://doi.org/10.1242/jcs.112.17.2867 Molinari, S., Shis, D. L., Bhakta, S. P., Chappell, J., Igoshin, O. A., Bennett, M. R. (2019). A synthetic system for asymmetric cell division in Escherichia coli. Na-ture Chemical Biology, 15(9), 917–924. https://doi.org/10.1038/s41589-019-0339-x Monod, J., Jacob, F. (1961). General Conclusions: Teleonomic Mechanisms in Cellu-lar Metabolism, Growth, and Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 26, 389–401. https://doi.org/10.1101/sqb.1961.026.01.048 Mushnikov, N. V., Fomicheva, A., Gomelsky, M., Bowman, G. R. (2019). Inducible asymmetric cell division and cell differentiation in a bacterium. Nature Chemical Biology, 15(9), 925–931. https://doi.org/10.1038/s41589-019-0340-4 Neumuller, R. A., Knoblich, J. A. (2009). Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Development, 23(23), 2675–2699. https://doi.org/10.1101/gad.1850809 Nierman, W. C., Feldblyum, T. V., Laub, M. T., Paulsen, I. T., Nelson, K. E., Eisen, J., Heidelberg, J. F., Alley, M. R., Ohta, N., Maddock, J. R., Potocka, I., Nelson, W. C., Newton, A., Stephens, C., Phadke, N. D., Ely, B., DeBoy, R. T., Dodson, R. J., Durkin, A. S., … Fraser, C. M. (2001). Complete genome sequence of Caulobac-ter crescentus. Proceedings of the National Academy of Sciences, 98(7), 4136–4141. https://doi.org/10.1073/pnas.061029298 Nordyke, C. T., Ahmed, Y. M., Puterbaugh, R. Z., Bowman, G. R., Varga, K. (2020). Intrinsically Disordered Bacterial Polar Organizing Protein Z, PopZ, Interacts with Protein Binding Partners Through an N-terminal Molecular Recognition Fea-ture. Journal of Molecular Biology, 432(23), 6092–6107. https://doi.org/10.1016/j.jmb.2020.09.020 Park, H.-O., Bi, E. (2007). Central Roles of Small GTPases in the Development of Cell Polarity in Yeast and Beyond. Microbiology and Molecular Biology Reviews, 71(1), 48–96. https://doi.org/10.1128/mmbr.00028-06 Patil, M., Dhar, P. K. (2014). A Brief Introduction to Synthetic Biology. Systems and Synthetic Biology, 229–240. https://doi.org/10.1007/978-94-017-9514-2_12 Piroli, M. E., Blanchette, J. O., Jabbarzadeh, E. (2019). Polarity as a physiological modulator of cell function. Frontiers in Bioscience, 24(3), 451–462. https://doi.org/10.2741/4728 Poindexter, J. S. (1964). BIOLOGICAL PROPERTIES AND CLASSIFICATION OF THE CAULOBACTER GROUP. Bacteriological Reviews, 28(3), 231–295. https://doi.org/10.1128/br.28.3.231-295.1964 Purnick, P. E., Weiss, R. (2009). The second wave of synthetic biology: from modules to systems. Nature Reviews Molecular Cell Biology, 10(6), 410–422. https://doi.org/10.1038/nrm2698 Quon, K. C., Marczynski, G. T., Shapiro, L. (1996). Cell Cycle Control by an Essen-tial Bacterial Two-Component Signal Transduction Protein. Cell, 84(1), 83–93. https://doi.org/10.1016/s0092-8674(00)80995-2 Rappel, W.-J., Edelstein-Keshet, L. (2017). Mechanisms of cell polarization. Current Opinion in Systems Biology, 3, 43–53. https://doi.org/10.1016/j.coisb.2017.03.005 Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellén, J., Peeters, T., Hohmann, S., de Nadal, E., Posas, F., Solé, R. (2010). Distributed biological computation with multicellular engineered networks. Nature, 469(7329), 207–211. https://doi.org/10.1038/nature09679 Rhyu, M. S., Jan, L. Y., Jan, Y. N. (1994). Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daugh-ter cells. Cell, 76(3), 477–491. https://doi.org/10.1016/0092-8674(94)90112-0 Rowlett, V. W., Margolin, W. (2014). Asymmetric Constriction of Dividing Esche-richia coli Cells Induced by Expression of a Fusion between Two Min Proteins. Journal of Bacteriology, 196(11), 2089–2100. https://doi.org/10.1128/jb.01425-13 Rowlett, V. W., Margolin, W. (2015). The Min system and other nucleoid-independent regulators of Z ring positioning. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00478 Schmidt, J. M., Stanier, R. Y. (1966). THE DEVELOPMENT OF CELLULAR STALKS IN BACTERIA. Journal of Cell Biology, 28(3), 423–436. https://doi.org/10.1083/jcb.28.3.423 Schweisguth, F. (2015). Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision. Wiley Interdisciplinary Reviews: Developmental Biology, 4(3), 299–309. https://doi.org/10.1002/wdev.175 Shao, W., Dong, J. (2016). Polarity in plant asymmetric cell division: Division orien-tation and cell fate differentiation. Developmental Biology, 419(1), 121–131. https://doi.org/10.1016/j.ydbio.2016.07.020 Singh, B., Nitharwal, R. G., Ramesh, M., Pettersson, B. M., Kirsebom, L. A., Dasgup-ta, S. (2013). Asymmetric growth and division in Mycobacterium spp.: compensa-tory mechanisms for non-medial septa. Molecular Microbiology, 88(1), 64–76. https://doi.org/10.1111/mmi.12169 Skerker, J. M., Laub, M. T. (2004). Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nature Reviews Microbiology, 2(4), 325–337. https://doi.org/10.1038/nrmicro864 Stackebrandt, E., Fischer, A., Roggentin, T., Wehmeyer, U., Bomar, D., Smida, J. (1988). A phylogenetic survey of budding, and/or prosthecate, non-phototrophic eubacteria: membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter and “Dichotomicrobium” to the alpha-subdivision of purple non-sulfur bacteria. Archives of Microbiology, 149(6), 547–556. https://doi.org/10.1007/bf00446759 Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S., Hasty, J. (2008). A fast, robust and tunable synthetic gene oscillator. Nature, 456(7221), 516–519. https://doi.org/10.1038/nature07389 Stock, A. M., Robinson, V. L., Goudreau, P. N. (2000). Two-Component Signal Transduction. Annual Review of Biochemistry, 69(1), 183–215. https://doi.org/10.1146/annurev.biochem.69.1.183 Stove Poindexter, J. L., Cohen-Bazire, G. (1964). THE FINE STRUCTURE OF STALKED BACTERIA BELONGING TO THE FAMILY CAULOBACTER-ACEAE. Journal of Cell Biology, 23(3), 587–607. https://doi.org/10.1083/jcb.23.3.587 Subramanian, K., Paul, M. R., Tyson, J. J. (2015). Dynamical Localization of DivL and PleC in the Asymmetric Division Cycle of Caulobacter crescentus: A Theoret-ical Investigation of Alternative Models. PLOS Computational Biology, 11(7). https://doi.org/10.1371/journal.pcbi.1004348 Thomas, V. N., Weiss, E. L., Brace, J. L. (2018). Asymmetric secretion in budding yeast reinforces daughter cell identity. https://doi.org/10.1101/483388 Tsokos, C. G., Laub, M. T. (2012). Polarity and cell fate asymmetry in Caulobacter crescentus. Current Opinion in Microbiology, 15(6), 744–750. https://doi.org/10.1016/j.mib.2012.10.011 Uversky, V. N. (2018). Intrinsic Disorder, Protein–Protein Interactions, and Disease. Protein-Protein Interactions in Human Disease, Part A, 85–121. https://doi.org/10.1016/bs.apcsb.2017.06.005 Vijay, S., Nagaraja, M., Sebastian, J., Ajitkumar, P. (2014). Asymmetric cell division in Mycobacterium tuberculosis and its unique features. Archives of Microbiology, 196(3), 157–168. https://doi.org/10.1007/s00203-014-0953-7 Viollier, P. H., Sternheim, N., Shapiro, L. (2002). Identification of a localization fac-tor for the polar positioning of bacterial structural and regulatory proteins. Pro-ceedings of the National Academy of Sciences, 99(21), 13831–13836. https://doi.org/10.1073/pnas.182411999 Westerhoff, H. V., Palsson, B. O. (2004). The Evolutionary History of Quorum-Sensing Systems in Bacteria. Molecular Biology and Evolution, 21(8), 1612–1612. https://doi.org/10.1093/molbev/msh171 Wingrove, J. A., Gober, J. W. (1995). The molecular basis of asymmetric cell division in Caulobacter crescentus. Seminars in Developmental Biology, 6(5), 325–333. https://doi.org/10.1016/s1044-5781(06)80074-5 Zhao, W., Duvall, S. W., Kowallis, K. A., Tomares, D. T., Petitjean, H. N., Childers, W. S. (2018). A circuit of protein-protein regulatory interactions enables polarity establishment in a bacterium. https://doi.org/10.1101/503250 Zhao, W., Duvall, S. W., Kowallis, K. A., Zhang, C., Tomares, D. T., Petitjean, H. N., Childers, W. S. (2020). Scaffold-scaffold interactions regulate cell polarity in a bacterium. https://doi.org/10.1101/2020.08.21.262345 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79324 | - |
| dc.description.abstract | 不對稱細胞分裂是細胞分化的重要過程。借助合成生物學的概念,我們可以通過在對稱分裂的模式生物,如大腸桿菌,中實施核心的不對稱分裂調控網絡來重現該過程。先前,我們的研究中發現可以用新月柄桿菌中構築極性網絡的核心蛋白(PopZ)來建構最小的不對稱細胞分裂模型。PopZ會穩健的在大腸桿菌細胞中行成單一的極化點,並能在開啟下游的基因表達後藉由一個不會擴散的報導蛋白形成可視化的不對稱分模型,完成最小系統的建構。然而這個最小的不對稱性分裂系統對報導蛋白的表達水平波動很敏感,因此在這項研究中我們的目標是添加對向極的新系統來建立一個雙極的模型,以期建立一個更穩定的不對稱細胞分裂系統。此系統設計使用新月柄桿菌PodJ(另一種也在細胞極處自組織的支架蛋白)添加到先前的系統中,並利用一個PodJ 的結合蛋白(PleC)作為連接蛋白進行測試。本研究的結果表明,PodJ和PleC可以作為在大腸桿菌中重建的穩健不對稱細胞分裂的第二極。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:58:09Z (GMT). No. of bitstreams: 1 U0001-2710202111413200.pdf: 10439138 bytes, checksum: ce40b2801c11cab60ad02e3d7025c322 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii List of Abbreviations iv Contents v Figure list vii Table list ix 1. Introduction 1 2. Literature review 7 2.1 Synthetic biology 7 2.2 Asymmetric cell division 9 2.2.1 Introduction of asymmetric cell division 9 2.2.2 Mechanism of asymmetric cell distribution 11 2.2.3 Asymmetric cell division in C. crescentus 13 2.2.4 Asymmetric cell division in E. coli 18 2.3 C. crescentus PodJ 20 3. Method 21 3.1 In silico prediction 21 3.2 Molecular Cloning 22 3.2.1 Bacteria strain culture conditions 22 3.2.2 Plasmid 22 3.2.3 Plasmid mini preparation 23 3.2.4 Primer design 25 3.2.5 PCR 26 3.2.6 PCR clean up 27 3.2.7 Restriction enzyme digestion 28 3.2.8 Agarose gel electrophoresis 28 3.2.9 Gel purification 29 3.2.10 DNA ligation 30 3.2.11 Gibson assembly 30 3.2.12 BioBrick assembly 31 3.2.13 Promoter replacement 32 3.2.14 Chemical transformation 32 3.3 Mammalian cell line culturing 33 3.3.1 Hela cell culturing 33 3.3.2 Plasmid transfection 33 3.4 Fluorescent microscopy 34 3.4.1 Imaging 34 3.4.2 Analysis 34 4. Results and discussion 36 4.1 In silico prediction 36 4.1.2 C. crescentus PopZ 36 4.1.2 C. crescentus PodJ 37 4.1.3 C. crescentus PleC 37 4.2 The formation of second pole 38 4.2.1 Minimal self-aggregation domain of PodJ 38 4.2.2 PodJ without PopZ binding domain 41 4.3 The co-expression test of PodJ 43 4.3.1 Co-expression PodJ with PopZ 43 4.3.2 Co-expression PodJ with SpmX 44 4.3.3 Co-expression PodJ with PleC 45 5. Conclusion and future work 47 6. Figure 48 7. Reference 91 Appendix I Sequence of PodJ I Appendix II Sequence of PleC IV Appendix III Sequence of PopZ VII Appendix IV Python code VIII | |
| dc.language.iso | en | |
| dc.title | 在大腸桿菌中建立第二極以人工實現穩健不對稱細胞分裂 | zh_TW |
| dc.title | Establishment of the second pole for a robust synthetic asymmetric cell division in Escherichia coli | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳亘承(Hsin-Tsai Liu),史有伶(Chih-Yang Tseng) | |
| dc.subject.keyword | 不對稱細胞分裂,新月柄桿菌,細胞極化,大腸桿菌,最小系統, | zh_TW |
| dc.subject.keyword | asymmetric cell division,Caulobacter crescentus,cell polarization,Escherichia coli,minimal system, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU202104321 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2710202111413200.pdf | 10.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
