Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章(Wen-Chang Chen)
dc.contributor.authorLi-Che Hsuen
dc.contributor.author徐立哲zh_TW
dc.contributor.authorf04549031
dc.date.accessioned2022-11-23T08:57:47Z-
dc.date.available2022-10-31
dc.date.available2022-11-23T08:57:47Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-10-06
dc.identifier.citation(I) Development of Stretchable Poly(siloxane-imide)s and Their Applications in Soft Electronic Devices: 1. M. T. Bogert and R. R. Renshaw, J. Am. Chem. Soc., 1908, 30, 1135-1144. 2. W. Edwards and I. Robinson, US Pat, 1955, 2712543. 3. Q.-H. Lu and F. Zheng, in Advanced Polyimide Materials, Elsevier, 2018, pp. 195-255. 4. C. Sroog, A. Endrey, S. Abramo, C. Berr, W. Edwards and K. Olivier, J. Polym. Sci. A., 1965, 3, 1373-1390. 5. M. Ghosh, Polyimides: fundamentals and applications, CRC press, 1996. 6. P. Lesieur, A. Barraud and M. Vandevyver, Thin Solid Films, 1987, 152, 155-164. 7. T. Kurosawa, T. Higashihara and M. Ueda, Polym. Chem., 2013, 4, 16-30. 8. T. S. Leu and C. S. Wang, J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 4139-4151. 9. C. Huang, F. Niu, G. Xie, J. Li, C. Li, Y. Wang, F. Ji, G. Zhang, R. Sun and C.-P. Wong, Mater. Res. Express, 2020, 6, 125358. 10. L. Y. Tseng, Y. C. Lin, C. C. Kuo, C. K. Chen, C. E. Wang, C. C. Kuo, M. Ueda and W. C. Chen, J. Polym.Sci., 2020, 58, 2366-2375. 11. Z. Gerashchenko, Y. S. Vygodskii, G. Slonimskii, A. Askadskii, V. Papkov, S. Vinogradova, V. Dashevskii, V. Klimova, F. Sherman and V. Korshak, Polym. Sci. USSR, 1973, 15, 1927-1942. 12. A. A. Kuznetsov, High Perform. Polym., 2000, 12, 445. 13. E. A. Laszlo, US Pat, 1965, 3179630. 14. E. A. Laszlo, US Pat, 1965, 3179631. 15. M. Oba, J. Polym. Sci., Part A: Polym. Chem., 1996, 34, 651-658. 16. Y. Ding, B. Bikson and J. K. Nelson, Macromolecules, 2002, 35, 905-911. 17. C. Huang, J. Li, D. Sun, R. Xuan, Y. Sui, T. Li, L. Shang, G. Zhang, R. Sun and C. P. Wong, J. Mater. Chem. C, 2020, 8, 14886-14894. 18. X. Liu, J. Yang, L. Guo and Y. Gu, Macromol. Rapid Commun., 2005, 26, 1682-1686. 19. A. Nelson, G. Guerra, D. J. Williams, F. E. Karasz and W. J. MacKnight, J. Appl. Polym. Sci., 1988, 36, 243-248. 20. DuPont Co., 2019, Kapton-Summary-of-Properties. 21. D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai and C.-S. Ha, Prog. Polym. Sci., 2012, 37, 907-974. 22. D.-J. Liaw, F.-C. Chang, M.-k. Leung, M.-Y. Chou and K. Muellen, Macromolecules, 2005, 38, 4024-4029. 23. D.-J. Liaw, K.-L. Wang and F.-C. Chang, Macromolecules, 2007, 40, 3568-3574. 24. S. Ebisawa, J. Ishii, M. Sato, L. Vladimirov and M. Hasegawa, Eur. Polym. J., 2010, 46, 283-297. 25. S. Numata, K. Fujisaki and N. Kinjo, Polymer, 1987, 28, 2282-2288. 26. M. Lian, X. Lu and Q. Lu, Macromolecules, 2018, 51, 10127-10135. 27. M. Hasegawa, Y. Hoshino, N. Katsura and J. Ishii, Polymer, 2017, 111, 91-102. 28. C.-K. Chen, Y.-C. Lin, S. Miyane, S. Ando, M. Ueda and W.-C. Chen, ACS Appl. Polym. Mater., 2020, 2, 3422-3432. 29. T. Matsuura, Y. Hasuda, S. Nishi and N. Yamada, Macromolecules, 1991, 24, 5001-5005. 30. Y. Oishi, M. Ishida, M. A. Kakimoto, Y. Imai and T. Kurosaki, J. Polym. Sci., Part A: Polym. Chem., 1992, 30, 1027-1035. 31. Q.-D. Ling, F.-C. Chang, Y. Song, C.-X. Zhu, D.-J. Liaw, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, J. Am. Chem. Soc., 2006, 128, 8732-8733. 32. T. Kuorosawa, C.-C. Chueh, C.-L. Liu, T. Higashihara, M. Ueda and W.-C. Chen, Macromolecules, 2010, 43, 1236-1244. 33. Y.-H. Chou, N.-H. You, T. Kurosawa, W.-Y. Lee, T. Higashihara, M. Ueda and W.-C. Chen, Macromolecules, 2012, 45, 6946-6956. 34. A.-D. Yu, T. Kurosawa, Y.-H. Chou, K. Aoyagi, Y. Shoji, T. Higashihara, M. Ueda, C.-L. Liu and W.-C. Chen, ACS Appl. Mater. Interfaces, 2013, 5, 4921-4929. 35. C. K. Chen, H. C. Hsieh, C. C. Shih, C. H. Wu, M. C. Fu, T. Higashihara, R. J. Jeng and W. C. Chen, J. Polym. Sci., Part A: Polym. Chem., 2019, 57, 1113-1121. 36. R. Bott, J. Summers, C. Arnold, L. Taylor, T. Ward and J. McGrath, J. Adhes., 1987, 23, 67-82. 37. C. Arnold, J. Summers, Y. Chen, R. Bott, D. Chen and J. McGrath, Polymer, 1989, 30, 986-995. 38. T. Yoon, C. Arnold-McKenna and J. McGrath, J. Adhes., 1992, 39, 15-27. 39. C. J. Lee, in Polymers for electronic and photonic applications, Academic Press New York, 1993, pp. 249-286. 40. Y. D. Moon and Y. M. Lee, J. Appl. Polym. Sci., 1993, 50, 1461-1473. 41. S. Kim, T. W. Pechar and E. Marand, Desalination, 2006, 192, 330-339. 42. D. Zhao, W. Chen, C. Qu, C. Liu, B. Cui, G. Li, J. Song, L. Li, S. Zheng and J. Chang, J. Appl. Polym. Sci., 2019, 136, 48148. 43. C. Yi, W. Li, S. Shi, K. He, P. Ma, M. Chen and C. Yang, Sol. Energy, 2020, 195, 340-354. 44. H.-j. Ni, J.-g. Liu, Z.-h. Wang and S.-y. Yang, J. Ind. Eng. Chem., 2015, 28, 16-27. 45. G.-S. Liou, P.-H. Lin, H.-J. Yen, Y.-Y. Yu, T.-W. Tsai and W.-C. Chen, J. Mater. Chem., 2010, 20, 531-536. 46. C.-C. Chang and W.-C. Chen, Chem. Mater., 2002, 14, 4242-4248. 47. D. Ji, T. Li, W. Hu and H. Fuchs, Adv. Mater., 2019, 31, 1806070. 48. Y.-H. Chou, H.-J. Yen, C.-L. Tsai, W.-Y. Lee, G.-S. Liou and W.-C. Chen, J. Mater. Chem. C, 2013, 1, 3235-3243. 49. Z. Bao, Y. Feng, A. Dodabalapur, V. Raju and A. J. Lovinger, Chem. Mater., 1997, 9, 1299-1301. 50. Y.-T. Chern and J.-Y. Tsai, Macromolecules, 2008, 41, 9556-9564. 51. C. Yang, J. Dong, Y. Fang, L. Ma, X. Zhao and Q. Zhang, J. Mater. Chem. C, 2018, 6, 1229-1238. 52. Y. Watanabe, Y. Shibasaki, S. Ando and M. Ueda, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 144-150. 53. Y. Watanabe, Y. Sakai, Y. Shibasaki, S. Ando, M. Ueda, Y. Oishi and K. Mori, Macromolecules, 2002, 35, 2277-2281. 54. Y. Watanabe, Y. Shibasaki, S. Ando and M. Ueda, Chem. Mater., 2002, 14, 1762-1766. 55. J. M. Shaw and P. F. Seidler, IBM Journal of Research and Development, 2001, 45, 3-9. 56. N. Koch, ChemPhysChem, 2007, 8, 1438-1455. 57. J. S. Chang, A. F. Facchetti and R. Reuss, IEEE J. Em. Sel. Top. C., 2017, 7, 7-26. 58. H. Sirringhaus, Adv. Mater., 2014, 26, 1319-1335. 59. D. Braga and G. Horowitz, Adv. Mater., 2009, 21, 1473-1486. 60. B. Kumar, B. K. Kaushik and Y. S. Negi, Polymer Reviews, 2014, 54, 33-111. 61. A. Facchetti, Mater. Today, 2007, 10, 28-37. 62. Y. Li, P. Sonar, L. Murphy and W. Hong, Energy Environ. Sci., 2013, 6, 1684-1710. 63. Y. Wang, X. Huang, T. Li, L. Li, X. Guo and P. Jiang, Chem. Mater., 2019, 31, 2212-2240. 64. S. Huang, Y. Liu, Y. Zhao, Z. Ren and C. F. Guo, Adv. Funct. Mater., 2019, 29, 1805924. 65. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Prog. Polym. Sci., 2008, 33, 917-978. 66. F. M. Raymo, Adv. Mater., 2002, 14, 401-414. 67. Y.-H. Chou, H.-C. Chang, C.-L. Liu and W.-C. Chen, Polym. Chem., 2015, 6, 341-352. 68. C.-C. Shih, W.-Y. Lee and W.-C. Chen, Mater. Horiz., 2016, 3, 294-308. 69. Y.-H. Chou, S. Takasugi, R. Goseki, T. Ishizone and W.-C. Chen, Polym. Chem., 2014, 5, 1063-1071. 70. W. P. Lin, S. J. Liu, T. Gong, Q. Zhao and W. Huang, Adv. Mater., 2014, 26, 570-606. 71. Q. D. Ling, Y. Song, S. L. Lim, E. Y. H. Teo, Y. P. Tan, C. Zhu, D. S. H. Chan, D. L. Kwong, E. T. Kang and K. G. Neoh, Angew. Chem., 2006, 118, 3013-3017. 72. H. J. Yen, C. J. Chen and G. S. Liou, Adv. Funct. Mater., 2013, 23, 5307-5316. 73. X. D. Zhuang, Y. Chen, G. Liu, B. Zhang, K. G. Neoh, E. T. Kang, C. X. Zhu, Y. X. Li and L. J. Niu, Adv. Funct. Mater., 2010, 20, 2916-2922. 74. S. J. Liu, Z. H. Lin, Q. Zhao, Y. Ma, H. F. Shi, M. D. Yi, Q. D. Ling, Q. L. Fan, C. X. Zhu and E. T. Kang, Adv. Funct. Mater., 2011, 21, 979-985. 75. D. Ji, L. Jiang, Y. Guo, H. Dong, J. Wang, H. Chen, Q. Meng, X. Fu, G. Tian and D. Wu, Adv. Funct. Mater., 2014, 24, 3783-3789. 76. D. Ji, L. Jiang, X. Cai, H. Dong, Q. Meng, G. Tian, D. Wu, J. Li and W. Hu, Org. Electron., 2013, 14, 2528-2533. 77. Y.-Y. Yu, C.-L. Liu, Y.-C. Chen, Y.-C. Chiu and W.-C. Chen, RSC Adv., 2014, 4, 62132-62139. 78. T. Ohta, T. Nagano, K. Ochi, Y. Kubozono and A. Fujiwara, Appl. Phys. Lett., 2006, 88, 103506. 79. D. Ji, T. Li, Y. Zou, M. Chu, K. Zhou, J. Liu, G. Tian, Z. Zhang, X. Zhang and L. Li, Nat. Commun., 2018, 9, 1-9. 80. S. Y. Yang, K. Shin and C. E. Park, Adv. Funct. Mater., 2005, 15, 1806-1814. 81. A. D. Yu, W. Y. Tung, Y. C. Chiu, C. C. Chueh, G. S. Liou and W. C. Chen, Macromol. Rapid Commun., 2014, 35, 1039-1045. 82. A.-D. Yu, T. Kurosawa, Y.-C. Lai, T. Higashihara, M. Ueda, C.-L. Liu and W.-C. Chen, J. Mater. Chem., 2012, 22, 20754-20763. 83. T. J. Lee, C.-W. Chang, S. G. Hahm, K. Kim, S. Park, D. M. Kim, J. Kim, W.-S. Kwon, G.-S. Liou and M. Ree, Nanotechnology, 2009, 20, 135204. 84. D. M. Kim, S. Park, T. J. Lee, S. G. Hahm, K. Kim, J. C. Kim, W. Kwon and M. Ree, Langmuir, 2009, 25, 11713-11719. 85. S. Song, J. Jang, Y. Ji, S. Park, T.-W. Kim, Y. Song, M.-H. Yoon, H. C. Ko, G.-Y. Jung and T. Lee, Org. Electron., 2013, 14, 2087-2092. 86. J. Vaillancourt, H. Zhang, P. Vasinajindakaw, H. Xia, X. Lu, X. Han, D. C. Janzen, W.-S. Shih, C. S. Jones and M. Stroder, Appl. Phys. Lett., 2008, 93, 444. 87. T. Sekitani, U. Zschieschang, H. Klauk and T. Someya, Nat. Mater., 2010, 9, 1015-1022. 88. J. Zhao, M. Zhang, S. Wan, Z. Yang and C. S. Hwang, ACS Appl. Mater. Interfaces, 2018, 10, 1828-1835. 89. S.-W. Yeom, B. You, K. Cho, H. Y. Jung, J. Park, C. Shin, B.-K. Ju and J.-W. Kim, Sci. Rep., 2017, 7, 1-9. 90. S. Chen, Z. Lou, D. Chen and G. Shen, Adv. Mater., 2018, 30, 1705400. 91. D. Hu, X. Wang, H. Chen and T. Guo, Adv. Funct. Mater., 2017, 27, 1703541. 92. D.-H. Kim and D. C. Kim, Nat. Electron., 2018, 1, 440-441. 93. S. P. Lacour, J. Jones, S. Wagner, T. Li and Z. Suo, Proc. IEEE, 2005, 93, 1459-1467. 94. D.-H. Kim, J. Song, W. M. Choi, H.-S. Kim, R.-H. Kim, Z. Liu, Y. Y. Huang, K.-C. Hwang, Y.-w. Zhang and J. A. Rogers, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 18675-18680. 95. C. W. Park, J. B. Koo, C.-S. Hwang, H. Park, S. G. Im and S.-Y. Lee, Appl. Phys. Express, 2018, 11, 126501. 96. J. A. Rogers, T. Someya and Y. Huang, Science, 2010, 327, 1603-1607. 97. D. C. Kim, H. J. Shim, W. Lee, J. H. Koo and D. H. Kim, Adv. Mater., 2020, 32, 1902743. 98. D. Y. Khang, J. A. Rogers and H. H. Lee, Adv. Funct. Mater., 2009, 19, 1526-1536. 99. Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang and J. A. Rogers, Nat. Nanotechnol., 2006, 1, 201-207. 100. X. Feng, B. D. Yang, Y. Liu, Y. Wang, C. Dagdeviren, Z. Liu, A. Carlson, J. Li, Y. Huang and J. A. Rogers, Acs Nano, 2011, 5, 3326-3332. 101. J.-Y. Sun, N. Lu, J. Yoon, K.-H. Oh, Z. Suo and J. J. Vlassak, J. Mater. Res., 2009, 24, 3338-3342. 102. C. C. Hung, Y. C. Chiu, H. C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali, S. H. Tung and W. C. Chen, Adv. Funct. Mater., 2017, 27, 1606161. 103. N.-H. You, C.-C. Chueh, C.-L. Liu, M. Ueda and W.-C. Chen, Macromolecules, 2009, 42, 4456-4463. 104. C.-L. Liu, T. Kurosawa, A.-D. Yu, T. Higashihara, M. Ueda and W.-C. Chen, J. Phys. Chem. C, 2011, 115, 5930-5939. 105. C.-J. Chen, H.-J. Yen, W.-C. Chen and G.-S. Liou, J. Mater. Chem., 2012, 22, 14085-14093. 106. C. Arnold, J. Summers and J. McGrath, Polym.Eng. Sci., 1989, 29, 1413-1418. 107. M. Rogers, D. Rodrigues, G. Wilkes, J. McGrath and A. Brennan, in Advances in New Materials, Springer, 1992, pp. 47-55. 108. Y. Shoji, R. Ishige, T. Higashihara, S. Kawauchi, J. Watanabe and M. Ueda, Macromolecules, 2010, 43, 8950-8956. 109. L. Dong, Y.-C. Chiu, C.-C. Chueh, A.-D. Yu and W.-C. Chen, Polym. Chem., 2014, 5, 6834-6846. 110. M. Ree, C. W. Chu and M. J. Goldberg, J. Appl. Phys., 1994, 75, 1410-1419. 111. M. Ree, K. Kim, S. Woo and H. Chang, J. Appl. Phys., 1997, 81, 698-708. 112. H. Mei, R. Huang, J. Y. Chung, C. M. Stafford and H.-H. Yu, Appl. Phys. Lett., 2007, 90, 151902. 113. Z. Wang, A. A. Volinsky and N. D. Gallant, J. Appl. Polym. Sci., 2014, 131. 114. G. Tian, D. Wu, L. Shi, S. Qi and Z. Wu, RSC Adv., 2012, 2, 9846-9850. 115. H. Vandeparre, Q. Liu, I. R. Minev, Z. Suo and S. P. Lacour, Adv. Mater., 2013, 25, 3117-3121. 116. I. M. Graz, D. P. Cotton and S. P. Lacour, Appl. Phys. Lett., 2009, 94, 071902. 117. K. Sugiyama, H. Ishii, Y. Ouchi and K. Seki, J. Appl. Phys., 2000, 87, 295-298. 118. R. A. Hatton, A. J. Miller and S. Silva, J. Mater. Chem., 2008, 18, 1183-1192. 119. M. Ree, Macromol. Res., 2006, 14, 1-33. 120. J. A. Rogers, Z. Bao and V. Raju, Appl. Phys. Lett., 1998, 72, 2716-2718. 121. Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi and T. Sakurai, Appl. Phys. Lett., 2004, 84, 3789-3791. 122. T. Sekitani, T. Someya and T. Sakurai, J. Appl. Phys., 2006, 100, 024513. 123. T. Sekitani, S. Iba, Y. Kato and T. Someya, Appl. Phys. Lett., 2004, 85, 3902-3904. 124. Y. Baek, S. Lim, E. J. Yoo, L. H. Kim, H. Kim, S. W. Lee, S. H. Kim and C. E. Park, ACS Appl. Mater. Interfaces, 2014, 6, 15209-15216. 125. S. Pyo, M. Lee, J. Jeon, J. H. Lee, M. H. Yi and J. S. Kim, Adv. Funct. Mater., 2005, 15, 619-626. 126. A. Gumyusenge, X. Luo, Z. Ke, D. T. Tran and J. Mei, ACS Materials Letters, 2019, 1, 154-157. 127. C.-K. Chen, Y.-C. Lin, L.-C. Hsu, J.-C. Ho, M. Ueda and W.-C. Chen, ACS Sustain.Chem. Eng., 2021, 9, 3278-3288. 128. Y. Yamada and N. Furukawa, Polym. J., 1997, 29, 923-930. 129. A. Ghosh and S. Banerjee, J. Appl. Polym. Sci., 2008, 109, 2329-2340. 130. A. Ghosh, S. Banerjee, L. Häußler and B. Voit, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2010, 47, 671-680. 131. M. Krea, D. Roizard and N. Moulai‐Mostefa, Polym. Int., 2013, 62, 1413-1424. 132. X. Pei, G. Chen, J. Liu and X. Fang, Polymer, 2015, 56, 229-236. 133. L.-C. Hsu, C.-C. Shih, H.-C. Hsieh, Y.-C. Chiang, P.-H. Wu, C.-C. Chueh and W.-C. Chen, Polym. Chem., 2018, 9, 5145-5154. 134. A. Ghosh, S. Banerjee, H. Komber, K. Schneider, L. Häußler and B. Voit, Eur. Polym. J., 2009, 45, 1561-1569. 135. X. Pei, G. Chen and X. Fang, J. Appl. Polym. Sci., 2013, 129, 3718-3727. 136. J. He, S. Machida, H. Kishi, K. Horie, H. Furukawa and R. Yokota, J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 2501-2512. 137. H. Koerner, R. J. Strong, M. L. Smith, D. H. Wang, L.-S. Tan, K. M. Lee, T. J. White and R. A. Vaia, Polymer, 2013, 54, 391-402. 138. H. Guo, M. A. B. Meador, L. McCorkle, D. J. Quade, J. Guo, B. Hamilton, M. Cakmak and G. Sprowl, ACS Appl. Mater. Interfaces, 2011, 3, 546-552. 139. M. A. B. Meador, E. J. Malow, R. Silva, S. Wright, D. Quade, S. L. Vivod, H. Guo, J. Guo and M. Cakmak, ACS Appl. Mater. Interfaces, 2012, 4, 536-544. 140. Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu and N. I. Rabiah, Sci. Adv., 2017, 3, e1602076. 141. Y.-C. Lin, F.-H. Chen, Y.-C. Chiang, C.-C. Chueh and W.-C. Chen, ACS Appl. Mater. Interfaces, 2019, 11, 34158-34170. 142. J. Simon, F. Barla, A. Kelemen-Haller, F. Farkas and M. Kraxner, Chromatographia, 1988, 25, 99-106. 143. S. Saengsuwan and S. Saikrasun, J. Therm. Anal. Calorim., 2012, 110, 1395-1406. 144. S. Venkatachalam and D. Hourlier, Ceram. Int., 2019, 45, 6255-6262. 145. N. K. Singh and A. J. Lesser, J. Polym. Sci., Part B: Polym. Phys., 2010, 48, 778-789. 146. J. Hong, X. Q. Yang, X. Wan, Z. Zheng and Z. S. Petrović, Polym. Int., 2017, 66, 126-132. 147. M. Thouless, Z. Li, N. Douville and S. Takayama, J. Mech. Phys, 2011, 59, 1927-1937. 148. T. Li and Z. Suo, Int. J. Solids Struct., 2007, 44, 1696-1705. 149. N. Balar and B. T. O’Connor, Macromolecules, 2017, 50, 8611-8618. 150. M. D. Dickey, Adv. Mater., 2017, 29, 1606425. 151. H. Qi, X. Wang, T. Zhu, J. Li, L. Xiong and F. Liu, ACS omega, 2019, 4, 22143-22151. 152. W. Xu and S.-W. Rhee, J. Mater. Chem., 2009, 19, 5250-5257. 153. X. Cheng, M. Caironi, Y.-Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti and H. Sirringhaus, Chem. Mater., 2010, 22, 1559-1566. 154. C. Lu, W.-Y. Lee, C.-C. Shih, M.-Y. Wen and W.-C. Chen, ACS Appl. Mater. Interfaces, 2017, 9, 25522-25532. 155. J. A. Spechler, T. W. Koh, J. T. Herb, B. P. Rand and C. B. Arnold, Adv. Funct. Mater., 2015, 25, 7428-7434.152. 156. S.-K. Kim, T. Liu and X. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 20865-20874. 157. Z. Yu, X. Niu, Z. Liu and Q. Pei, Adv. Mater., 2011, 23, 3989-3994. 158. L. Song, A. C. Myers, J. J. Adams and Y. Zhu, ACS Appl. Mater. Interfaces, 2014, 6, 4248-4253. 159. J. Yao, C. Wang, C. Tian, X. Zhao, H. Zhou, D. Wang and C. Chen, Des. Monomers Polym., 2017, 20, 449-457. 160. J. Miao, X. Hu, X. Wang, X. Meng, Z. Wang and J. Yan, Polym. Chem., 2020, 11, 6009-6016. (II) Synthesis of Bio-based Block Copolymers with Conjugated Segments and Their Applications in Electronic Devices: 1. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, J. Chem. Soc., Chem. Commun., 1977, 578-580. 2. J. H. Burroughes, D. D. Bradley, A. Brown, R. Marks, K. Mackay, R. H. Friend, P. Burns and A. Holmes, Nature, 1990, 347, 539-541. 3. M. Kuik, G. J. A. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw and P. W. Blom, Adv. Mater., 2014, 26, 512-531. 4. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 15-26. 5. M. Helgesen, R. Søndergaard and F. C. Krebs, J. Mater. Chem., 2010, 20, 36-60. 6. F. Garnier, R. Hajlaoui, A. Yassar and P. Srivastava, Science, 1994, 265, 1684-1686. 7. H. Sirringhaus, Adv. Mater., 2014, 26, 1319-1335. 8. J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Nat. Mater., 2004, 3, 918. 9. P. Heremans, G. H. Gelinck, R. Muller, K.-J. Baeg, D.-Y. Kim and Y.-Y. Noh, Chem. Mater., 2010, 23, 341-358. 10. B. Adhikari and S. Majumdar, Prog. Polym. Sci., 2004, 29, 699-766. 11. L. Torsi, M. Magliulo, K. Manoli and G. Palazzo, Chem. Soc. Rev., 2013, 42, 8612-8628. 12. G. J. N. Wang, A. Gasperini and Z. Bao, Adv. Electron. Mater., 2018, 4, 1700429. 13. M. Stoppa and A. Chiolerio, Sensors, 2014, 14, 11957-11992. 14. Y. Liu, M. Pharr and G. A. Salvatore, ACS nano, 2017, 11, 9614-9635. 15. X. Wang, Z. Liu and T. Zhang, Small, 2017, 13, 1602790. 16. J. S. Heo, J. Eom, Y. H. Kim and S. K. Park, Small, 2018, 14, 1703034. 17. M. Ashizawa, Y. Zheng, H. Tran and Z. Bao, Prog. Polym. Sci., 2019, 101181. 18. J. Onorato, V. Pakhnyuk and C. K. Luscombe, Polym. J., 2017, 49, 41-60. 19. M. Shin, J. Y. Oh, K. E. Byun, Y. J. Lee, B. Kim, H. K. Baik, J. J. Park and U. Jeong, Adv. Mater., 2015, 27, 1255-1261. 20. S. Savagatrup, A. S. Makaram, D. J. Burke and D. J. Lipomi, Adv. Funct. Mater., 2014, 24, 1169-1181. 21. J. Xu, S. Wang, G.-J. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig and J. W. To, Science, 2017, 355, 59-64. 22. P. H. Chu, G. Wang, B. Fu, D. Choi, J. O. Park, M. Srinivasarao and E. Reichmanis, Adv. Electron. Mater., 2016, 2, 1500384. 23. T. Sun, J. I. Scott, M. Wang, R. J. Kline, G. C. Bazan and B. T. O'Connor, Adv. Electron. Mater., 2017, 3, 1600388. 24. H.-C. Wu, S. J. Benight, A. Chortos, W.-Y. Lee, J. Mei, J. W. To, C. Lu, M. He, J. B.-H. Tok and W.-C. Chen, Chem. Mater., 2014, 26, 4544-4551. 25. S. Savagatrup, X. Zhao, E. Chan, J. Mei and D. J. Lipomi, Macromol. Rapid Commun., 2016, 37, 1623-1628. 26. A. D. Printz, S. Savagatrup, D. J. Burke, T. N. Purdy and D. J. Lipomi, RSC Adv., 2014, 4, 13635-13643. 27. S. Savagatrup, A. D. Printz, D. Rodriquez and D. J. Lipomi, Macromolecules, 2014, 47, 1981-1992. 28. H.-C. Wu, C.-C. Hung, C.-W. Hong, H.-S. Sun, J.-T. Wang, G. Yamashita, T. Higashihara and W.-C. Chen, Macromolecules, 2016, 49, 8540-8548. 29. H.-F. Wen, H.-C. Wu, J. Aimi, C.-C. Hung, Y.-C. Chiang, C.-C. Kuo and W.-C. Chen, Macromolecules, 2017, 50, 4982-4992. 30. Y.-C. Chiang, H.-C. Wu, H.-F. Wen, C.-C. Hung, C.-W. Hong, C.-C. Kuo, T. Higashihara and W.-C. Chen, Macromolecules, 2019, 52, 4396-4404. 31. Y.-C. Lin, F.-H. Chen, Y.-C. Chiang, C.-C. Chueh and W.-C. Chen, ACS Appl. Mater. Interfaces, 2019, 11, 34158-34170. 32. J. Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez and T. Katsumata, Nature, 2016, 539, 411-415. 33. Y.-C. Lin, C.-K. Chen, Y.-C. Chiang, C.-C. Hung, M.-C. Fu, S. Inagaki, C.-C. Chueh, T. Higashihara and W.-C. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 33014-33027. 34. Y.-W. Huang, Y.-C. Lin, H.-C. Yen, C.-K. Chen, W.-Y. Lee, W.-C. Chen and C.-C. Chueh, Chem. Mater., 2020, 32, 7370-7382. 35. C. Müller, S. Goffri, D. W. Breiby, J. W. Andreasen, H. D. Chanzy, R. A. Janssen, M. M. Nielsen, C. P. Radano, H. Sirringhaus and P. Smith, Adv. Funct. Mater., 2007, 17, 2674-2679. 36. J.-T. Wang, S. Takshima, H.-C. Wu, C.-C. Shih, T. Isono, T. Kakuchi, T. Satoh and W.-C. Chen, Macromolecules, 2017, 50, 1442-1452. 37. R. Peng, B. Pang, D. Hu, M. Chen, G. Zhang, X. Wang, H. Lu, K. Cho and L. Qiu, J. Mater. Chem. C, 2015, 3, 3599-3606. 38. T. Higashihara, S. Fukuta, Y. Ochiai, T. Sekine, K. Chino, T. Koganezawa and I. Osaka, ACS Appl. Polym. Mater., 2019, 1, 315-320. 39. Y.-C. Chiang, S. Kobayashi, T. Isono, C.-C. Shih, T. Shingu, J.-J. Hung, H.-C. Hsieh, S.-H. Tung, T. Satoh and W.-C. Chen, Polym. Chem., 2019, 10, 5452-5464. 40. D. Neher, Macromol. Rapid Commun., 2001, 22, 1365-1385. 41. Q. Zhao, S. J. Liu and W. Huang, Macromol. Chem. Phys., 2009, 210, 1580-1590. 42. X.-D. Zhuang, Y. Chen, B.-X. Li, D.-G. Ma, B. Zhang and Y. Li, Chem. Mater., 2010, 22, 4455-4461. 43. T.-W. Kim, S.-H. Oh, H. Choi, G. Wang, H. Hwang, D.-Y. Kim and T. Lee, Appl. Phys. Lett., 2008, 92, 231. 44. J.-T. Wang, K. Saito, H.-C. Wu, H.-S. Sun, C.-C. Hung, Y. Chen, T. Isono, T. Kakuchi, T. Satoh and W.-C. Chen, NPG Asia Mater., 2016, 8, e298. 45. H.-C. Hsieh, C.-C. Hung, K. Watanabe, J.-Y. Chen, Y.-C. Chiu, T. Isono, Y.-C. Chiang, R. R. Reghu, T. Satoh and W.-C. Chen, Polym. Chem., 2018, 9, 3820-3831. 46. D.-H. Jiang, S. Kobayashi, C.-C. Jao, Y. Mato, T. Isono, Y.-H. Fang, C.-C. Lin, T. Satoh, S.-H. Tung and C.-C. Kuo, Polymers, 2020, 12, 84. 47. A.-N. Au-Duong, C.-C. Wu, Y.-T. Li, Y.-S. Huang, H.-Y. Cai, I. Jo Hai, Y.-H. Cheng, C.-C. Hu, J.-Y. Lai and C.-C. Kuo, Macromolecules, 2020, 53, 4030-4037. 48. B. O'Connor, R. J. Kline, B. R. Conrad, L. J. Richter, D. Gundlach, M. F. Toney and D. M. DeLongchamp, Adv. Funct. Mater., 2011, 21, 3697-3705. 49. G. J. N. Wang, L. Shaw, J. Xu, T. Kurosawa, B. C. Schroeder, J. Y. Oh, S. J. Benight and Z. Bao, Adv. Funct. Mater., 2016, 26, 7254-7262. 50. S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig and J. Lopez, Nature, 2018, 555, 83. 51. A. D. Printz, S. Savagatrup, D. Rodriquez and D. J. Lipomi, Sol. Energy Mater. Sol. Cells, 2015, 134, 64-72. 52. T. Kim, J.-H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, U. Jeong and T.-S. Kim, Nat. Commun., 2015, 6, 1-7. 53. W. Huang, Z. Jiang, K. Fukuda, X. Jiao, C. R. McNeill, T. Yokota and T. Someya, Joule, 2020, 4, 128-141. 54. D. J. Lipomi, H. Chong, M. Vosgueritchian, J. Mei and Z. Bao, Sol. Energy Mater. Sol. Cells, 2012, 107, 355-365. 55. L. Li, J. Liang, H. Gao, Y. Li, X. Niu, X. Zhu, Y. Xiong and Q. Pei, ACS Appl. Mater. Interfaces, 2017, 9, 40523-40532. 56. J. Qin, L. Lan, S. Chen, F. Huang, H. Shi, W. Chen, H. Xia, K. Sun and C. Yang, Adv. Funct. Mater., 2020, 30, 2002529. 57. P. B. J. St. Onge, M. U. Ocheje, M. Selivanova and S. Rondeau‐Gagné, Chem. Rec., 2019, 19, 1008-1027. 58. C.-C. Shih, W.-Y. Lee and W.-C. Chen, Mater. Horiz., 2016, 3, 294-308. 59. C.-L. Liu and W.-C. Chen, in Electrical Memory Materials and Devices, Royal Society of Chemistry, 2015, pp. 233-255. 60. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Prog. Polym. Sci., 2008, 33, 917-978. 61. Y.-C. Lai, Y.-C. Huang, T.-Y. Lin, Y.-X. Wang, C.-Y. Chang, Y. Li, T.-Y. Lin, B.-W. Ye, Y.-P. Hsieh and W.-F. Su, NPG Asia Mater., 2014, 6, e87. 62. C. Ban, X. Wang, Z. Zhou, H. Mao, S. Cheng, Z. Zhang, Z. Liu, H. Li, J. Liu and W. Huang, Sci. Rep., 2019, 9, 1-7. 63. K. Rajan, E. Garofalo and A. Chiolerio, Sensors, 2018, 18, 367. 64. C. C. Hung, Y. C. Chiu, H. C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali, S. H. Tung and W. C. Chen, Adv. Funct. Mater., 2017, 27, 1606161. 65. C.-C. Hung, S. Nakahira, Y.-C. Chiu, T. Isono, H.-C. Wu, K. Watanabe, Y.-C. Chiang, S. Takashima, R. Borsali and S.-H. Tung, Macromolecules, 2018, 51, 4966-4975. 66. T. Iwata, Angew. Chem. Int. Ed., 2015, 54, 3210-3215. 67. S. M. Roopan, T. Surendra and G. Madhumitha, Handbook of Polymers for Pharmaceutical Technologies; Wiley: Hoboken, NJ, USA, 2015, 3, 541-555. 68. R. P. Babu, K. O'connor and R. Seeram, Progress in biomaterials, 2013, 2, 1-16. 69. V. Forti, C. P. Baldé, R. Kuehr, G. Bel, The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential, Bonn, Geneva, Rotterdam, 2020. 70. M. Irimia-Vladu, Chem. Soc. Rev., 2014, 43, 588-610. 71. K.-T. Huang, C.-C. Chueh and W.-C. Chen, Mater. Today Sustain., 2020, 100057. 72. C. J. Bettinger and Z. Bao, Polym. Int., 2010, 59, 563-567. 73. T. Lei, M. Guan, J. Liu, H.-C. Lin, R. Pfattner, L. Shaw, A. F. McGuire, T.-C. Huang, L. Shao and K.-T. Cheng, Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 5107-5112. 74. J. W. Chang, C. G. Wang, C. Y. Huang, T. D. Tsai, T. F. Guo and T. C. Wen, Adv. Mater., 2011, 23, 4077-4081. 75. P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle and N. S. Sariciftci, Org. Electron., 2007, 8, 648-654. 76. J.-Y. Lam, G.-W. Jang, C.-J. Huang, S.-H. Tung and W.-C. Chen, ACS Sustain.Chem. Eng., 2020, 8, 5100-5106. 77. K.-T. Huang, C.-C. Shih, B.-H. Jiang, R.-J. Jeng, C.-P. Chen and W.-C. Chen, J. Mater. Chem. C, 2019, 7, 12572-12579. 78. K.-T. Huang, C.-P. Chen, B.-H. Jiang, R.-J. Jeng and W.-C. Chen, Org. Electron., 2020, 87, 105924. 79. R. Nie, A. Li and X. Deng, J. Mater. Chem. A, 2014, 2, 6734-6739. 80. P.-C. Lin, Y.-T. Wong, Y.-A. Su, W.-C. Chen and C.-C. Chueh, ACS Sustain. Chem. Eng., 2018, 6, 14621-14630. 81. J. Dagar, M. Scarselli, M. De Crescenzi and T. M. Brown, ACS Energy Lett., 2016, 1, 510-515. 82. H. Liu, R. Jian, H. Chen, X. Tian, C. Sun, J. Zhu, Z. Yang, J. Sun and C. Wang, Nanomaterials, 2019, 9, 950. 83. S. Bonardd, N. Morales, L. Gence, C. Saldías, F. A. Angel, G. Kortaberria and A. Leiva, ACS Appl. Mater. Interfaces, 2020, 12, 13275-13286. 84. N. Maity and A. Dawn, Polymers, 2020, 12, 709. 85. P. Cataldi, I. S. Bayer, F. Bonaccorso, V. Pellegrini, A. Athanassiou and R. Cingolani, Adv. Electron. Mater., 2015, 1, 1500224. 86. Y. Sakai-Otsuka, S. Zaioncz, I. Otsuka, S. Halila, P. Rannou and R. Borsali, Macromolecules, 2017, 50, 3365-3376. 87. K. M. Zia, A. Noreen, M. Zuber, S. Tabasum and M. Mujahid, Int. J. Biol. Macromol., 2016, 82, 1028-1040. 88. C. J. Bettinger and Z. Bao, Adv. Mater., 2010, 22, 651-655. 89. G. Z. Papageorgiou, D. G. Papageorgiou, Z. Terzopoulou and D. N. Bikiaris, Eur. Polym. J., 2016, 83, 202-229. 90. S. K. Burgess, J. E. Leisen, B. E. Kraftschik, C. R. Mubarak, R. M. Kriegel and W. J. Koros, Macromolecules, 2014, 47, 1383-1391. 91. J. Y. Lam, C. C. Shih, W. Y. Lee, C. C. Chueh, G. W. Jang, C. J. Huang, S. H. Tung and W. C. Chen, Macromol. Rapid Commun., 2018, 39, 1800271. 92. M. Labet and W. Thielemans, Chem. Soc. Rev., 2009, 38, 3484-3504. 93. I. Fortelny, A. Ujcic, L. Fambri and M. Slouf, Front. Mater., 2019, 6, 206. 94. T. Patrício, M. Domingos, A. Gloria and P. Bártolo, Procedia Cirp, 2013, 5, 110-114. 95. F. Sugiyama, A. T. Kleinschmidt, L. V. Kayser, M. A. Alkhadra, J. M.-H. Wan, A. S.-C. Chiang, D. Rodriquez, S. E. Root, S. Savagatrup and D. J. Lipomi, Macromolecules, 2018, 51, 5944-5949. 96. M. T. Martello, A. Burns and M. Hillmyer, ACS Macro Lett., 2012, 1, 131-135. 97. D. Tang, C. W. Macosko and M. A. Hillmyer, Polym. Chem., 2014, 5, 3231-3237. 98. D. K. Schneiderman, C. Gilmer, M. T. Wentzel, M. T. Martello, T. Kubo and J. E. Wissinger, J. Chem. Educ., 2014, 91, 131-135. 99. T. Isono, B. J. Ree, K. Tajima, R. Borsali and T. Satoh, Macromolecules, 2018, 51, 428-437. 100. T. Isono, S. Nakahira, H.-C. Hsieh, S. Katsuhara, H. Mamiya, T. Yamamoto, W.-C. Chen, R. Borsali, K. Tajima and T. Satoh, Macromolecules, 2020, 53, 5408-5417. 101. K. K. Bansal, D. Kakde, L. Purdie, D. J. Irvine, S. M. Howdle, G. Mantovani and C. Alexander, Polym. Chem., 2015, 6, 7196-7210. 102. R. Ferrari, A. Agostini, L. Brunel, L. Morosi and D. Moscatelli, J. Polym. Sci., Part A: Polym. Chem., 2017, 55, 3788-3797. 103. K. K. Bansal, J. Gupta, A. Rosling and J. M. Rosenholm, Saudi. Pharm. J., 2018, 26, 358-368. 104. T. Rali, S. W. Wossa and D. N. Leach, Molecules, 2007, 12, 149-154. 105. Y. Gounaris, Flavour. Fragr. J., 2010, 25, 367-386. 106. K. Houk, A. Jabbari, H. Hall and C. Alemán, J. Org. Chem., 2008, 73, 2674-2678. 107. C. Aleman, O. Betran, J. Casanovas, K. Houk and H. Hall Jr, J. Org. Chem., 2009, 74, 6237-6244. 108. O. Coulembier, P. Degée, J. L. Hedrick and P. Dubois, Prog. Polym. Sci., 2006, 31, 723-747. 109. K. Makiguchi, T. Satoh and T. Kakuchi, Macromolecules, 2011, 44, 1999-2005. 110. T. Isono, I. Otsuka, S. Halila, R. Borsali, T. Kakuchi and T. Satoh, J. Photopolym. Sci. Technol., 2015, 28, 635-642. 111. K. Saito, T. Isono, H.-S. Sun, T. Kakuchi, W.-C. Chen and T. Satoh, Polym. Chem., 2015, 6, 6959-6972. 112. J. A. Rogers, T. Someya and Y. Huang, Science, 2010, 327, 1603-1607. 113. T. Q. Trung and N. E. Lee, Adv. Mater., 2017, 29, 1603167. 114. J.-S. Kim, J.-H. Kim, W. Lee, H. Yu, H. J. Kim, I. Song, M. Shin, J. H. Oh, U. Jeong and T.-S. Kim, Macromolecules, 2015, 48, 4339-4346. 115. S. Y. Son, J.-H. Kim, E. Song, K. Choi, J. Lee, K. Cho, T.-S. Kim and T. Park, Macromolecules, 2018, 51, 2572-2579. 116. B. O’Connor, E. P. Chan, C. Chan, B. R. Conrad, L. J. Richter, R. J. Kline, M. Heeney, I. McCulloch, C. L. Soles and D. M. DeLongchamp, Acs Nano, 2010, 4, 7538-7544. 117. B. Roth, S. Savagatrup, N. V. de los Santos, O. Hagemann, J. E. Carlé, M. Helgesen, F. Livi, E. Bundgaard, R. R. Søndergaard and F. C. Krebs, Chem. Mater., 2016, 28, 2363-2373. 118. F. Ge, Z. Liu, F. Tian, Y. Du, L. Liu, X. Wang, H. Lu, Z. Wu, G. Zhang and L. Qiu, Polym. Chem., 2018, 9, 4517-4522. 119. T. Isono, I. Otsuka, Y. Kondo, S. Halila, S. Fort, C. Rochas, T. Satoh, R. Borsali and T. Kakuchi, Macromolecules, 2013, 46, 1461-1469. 120. A. E. Speers, G. C. Adam and B. F. Cravatt, J. Am. Chem. Soc., 2003, 125, 4686-4687. 121. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu and J. M. Frechet, Adv. Mater., 2003, 15, 1519-1522. 122. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. Fréchet and M. F. Toney, Macromolecules, 2005, 38, 3312-3319. 123. Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin and Z. Bao, J. Am. Chem. Soc., 2009, 131, 9396-9404. 124. A. Labuda, M. Kocuń, W. Meinhold, D. Walters and R. Proksch, Beilstein J. Nanotechnol., 2016, 7, 970-982. 125. H. K. Nguyen, M. Ito and K. Nakajima, Jpn. J. Appl. Phys., 2016, 55, 08NB06. 126. Z. N. Mahani and M. Tajvidi, Int. J. Adhes. Adhes., 2017, 79, 59-66. 127. J. Tang and E. Y. X. Chen, J. Polym. Sci., Part A: Polym. Chem., 2018, 56, 2271-2279. 128. M. Hong and E. Y.-X. Chen, Nat. Chem., 2016, 8, 42. 129. P. Kohn, S. Huettner, H. Komber, V. Senkovskyy, R. Tkachov, A. Kiriy, R. H. Friend, U. Steiner, W. T. Huck and J.-U. Sommer, J. Am. Chem. Soc., 2012, 134, 4790-4805. 130. G. Strobl, Prog. Polym. Sci., 2006, 31, 398-442. 131. H. Park, B. S. Ma, J.-S. Kim, Y. Kim, H. J. Kim, D. Kim, H. Yun, J. Han, F. S. Kim and T.-S. Kim, Macromolecules, 2019, 52, 7721-7730. 132. J. Park, C. Choi, S. Hyun, H. C. Moon, K. L. Vincent Joseph and J. K. Kim, Macromolecules, 2016, 49, 616-623. 133. H. Lim, C.-Y. Chao and W.-F. Su, Macromolecules, 2015, 48, 3269-3281. 134. M. Alizadehaghdam, B. Heck, S. Siegenführ, F. Abbasi and G. n. Reiter, Macromolecules, 2019, 52, 2487-2494. 135. M. Roesing, J. Howell and D. Boucher, J. Polym. Sci., Part B: Polym. Phys., 2017, 55, 1075-1087. 136. O. Inganäs, W. Salaneck, J.-E. Österholm and J. Laakso, Synth. Met., 1988, 22, 395-406. 137. L. He, S. Pan and J. Peng, J. Polym. Sci., Part B: Polym. Phys., 2016, 54, 544-551. 138. H. Yamagata and F. C. Spano, J. Chem. Phys., 2012, 136, 184901. 139. J. Mai, T.-K. Lau, J. Li, S.-H. Peng, C.-S. Hsu, U.-S. Jeng, J. Zeng, N. Zhao, X. Xiao and X. Lu, Chem. Mater., 2016, 28, 6186-6195. 140. D. Son, J. H. Koo, J.-K. Song, J. Kim, M. Lee, H. J. Shim, M. Park, M. Lee, J. H. Kim and D.-H. Kim, ACS nano, 2015, 9, 5585-5593. 141. Y.-C. Lai, Y.-C. Huang, T.-Y. Lin, Y.-X. Wang, C.-Y. Chang, Y. Li, T.-Y. Lin, B.-W. Ye, Y.-P. Hsieh and W.-F. Su, NPG Asia Mater., 2014, 6, e87-e87. 142. C. a. Di, F. Zhang and D. Zhu, Adv. Mater., 2013, 25, 313-330. 143. Y. Ni, Y. Wang and W. Xu, Small, 2020, 1905332. 144. A.-N. Au………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79305-
dc.description.abstract" 可拉伸高分子材料由於具備無機材料所欠缺的結構延展性,及可調控之電氣性質,近年來被廣泛應用於開發軟性及穿戴式電子元件。本論文的第一部分(章節一至章節四)介紹可拉伸型聚醯亞胺之高分子結構設計。聚醯亞胺由於其高熱穩定性及溶劑可加工性,被廣泛應用於有機電子元件之基材、介電層與記憶體層。然而,先前研究所報導的聚醯亞胺元件皆僅具備可撓曲性質,至今尚未被拓展至可拉伸元件。第二章介紹可拉伸之聚矽氧烷-醯亞胺高分子。市售的二酸酐單體及具備不同長度矽氧烷軟鏈段之二胺被用於合成一系列之聚(矽氧烷-醯亞胺)高分子。其中,ODPA–A12 聚(矽氧烷-醯亞胺)受益於4,4’-氧雙鄰苯二甲酸酐之柔軟結構以及較短的矽氧烷軟鏈段,展現良好之機械性質例如32.8% 之斷裂伸長量及1.60 MPa之楊氏模數,同時具備良好之溶劑可加工性。因此,該高分子薄膜被應用於製作可拉伸且非揮發性之阻抗型記憶體之記憶體層。延續前一章的結構設計,第三章引入具有三官能基的1,3,5-三(4-氨基苯氧基)苯作為交聯劑,形成聚(矽氧烷-醯亞胺)網狀高分子。藉由調控網狀結構之交聯度,聚矽氧烷-醯亞胺材料可達到超過400%之斷裂伸長量、13.29 MJ M-3之韌性和極佳的形變回復力,且同時具備高於200 °C之軟化溫度。該彈性體作為基材及薄膜皆展現良好耐拉性,展現其極高潛力應用於可拉伸元件。此高分子成功與導電高分子結合,開發出高達100%可拉伸且溶劑可加工之阻抗式記憶體及有機場效電晶體。此部分研究展現高分子結構設計可優化聚矽氧烷-醯亞胺之機械性質,並成功將該材料應用於溶劑可加工且高拉伸性之高分子元件。 本論文的第二部分(章節五至章節八)介紹引入生物來源軟鏈段所合成之嵌段型共軛高分子。生物來源之聚丁位癸内酯軟鏈段與典型的共軛高分子結合形成嵌段型高分子,以提升半導體材料之生質含量及可拉伸性。第六章介紹利用聚丁位癸内酯及聚3-己基噻吩合成之軟–硬–軟三嵌段高分子應用於有機場效電晶體之半導體層。三嵌段結構確保聚3-己基噻吩主鏈之堆疊形成電荷傳輸通道,而分支狀軟鏈段成功調控高分子的結晶度以及相分離,形成高電洞遷移率(4.5×10-2 –8.9×10-2 cm2 V-1 S-1)及高拉伸性的半導體高分子材料。其中,B3AB3型高分子(A:聚3-己基噻吩、B:聚丁位癸内酯)具備最優異之拉伸性,在被拉伸至100%時仍可維持72–75%之電洞遷移率,並可通過500次50%之循環拉伸測試。第七章介紹利用聚丁位癸内酯及聚9,9-雙己基茀合成之雙嵌段共軛高分子,此類高分子被用於電晶體式記憶體之電荷儲存層。受益於聚丁位癸内酯之軟鏈段,AB、AB2及AB3型高分子(A:聚9,9-雙己基茀、B:聚丁位癸内酯)之薄膜皆可承受100% 之應變而不產生裂痕。此外,利用電腦軟體分析原子力顯微鏡相圖,可量化計算聚茀結晶於高分子薄膜之覆蓋面積,並建立電荷儲存密度–薄膜表面型態之關聯性。隨著軟鏈段的分支數增加,高分子形成更高密度的聚茀結晶,達到優化之記憶體元件表現。AB3型高分子具備最佳的記憶體表現(memory window = 108V),且可承受100%之拉伸並通過500次50%之循環拉伸測試。此部分研究成功將生物來源脂肪族聚酯與共軛高分子結合生成高生質含量之軟性半導體材料,並展現嵌段高分子之構型設計可優化其機械及電氣性質。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:57:47Z (GMT). No. of bitstreams: 1
U0001-0510202122191300.pdf: 16919899 bytes, checksum: 8f1107cdd31317040ca60224ac685b23 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 i 中文摘要 iii ABSTRACT v CONTENTS viii LIST OF TABLES xiii LIST OF FIGURES xv PART ONE: 可拉伸之聚矽氧烷-醯亞胺高分子合成及其於軟性電子元件之應用 Development of Stretchable Poly(siloxane-imide)s and Their Applications in Soft Electronic Devices 1 Chapter 1 Introduction 2 1.1 Best-Seller in Polymer Electronics: Polyimide materials 2 1.1.1 Syntheses of PI 3 1.1.2 Structure–Property Relationships of PI 6 1.2 PI-Based Electronic Devices 11 1.2.1 Introduction to Organic Transistors and Memory devices 12 1.2.2 PI as Dielectrics 19 1.2.3 PI as Memory Elements 20 1.2.4 PI as Substrates and Stretchable Device Arrays 22 1.3 Research Objectives 23 1.4 Tables and Figures 26 Chapter 2 Intrinsically Stretchable and Solution-processable Poly(siloxane-imide)s for Stretchable Resistive Memory Applications 33 2.1 Background 33 2.2 Experimental Section 36 2.2.1 Materials 36 2.2.2 Polymer Synthesis 37 2.2.3 Characterization 38 2.3 Results and Discussion 41 2.3.1 Polymer Characterization 41 2.3.2 Thermal, Optical, Electrochemical Properties and Memory Behavior 42 2.3.3 Mechanical Properties 45 2.3.4 Stretchable Resistive Memory Applications 47 2.4 Summary 50 2.5 Tables and Figures 51 Chapter 3 Mechanically Tough and Elastomeric Poly(siloxane-imide) Networks for Stretchable Electronic Applications 64 3.1 Background 64 3.2 Experimental Section 67 3.2.1 Materials 67 3.2.2 Polymer Synthesis 68 3.2.3 Characterization 71 3.3 Results and Discussion 75 3.3.1 Polymer Characterization 75 3.3.2 Molecular Packing, Thermal and Mechanical Properties 78 3.3.3 Mechanical Strength and Hysteresis 81 3.3.4 Stretchable PEDOT:PSS/LiTFSI conductor on PSIs 83 3.3.5 PSI as active layers 85 3.3.6 Stretchable resistive memory 86 3.3.7 Stretchable OFET 88 3.4 Summary 91 3.5 Tables and Figures 93 Chapter 4 Conclusion and Perspectives 116 4.1 Conclusion 116 4.2 Future Work 117 REFERENCE 119 PART TWO: 具有生物來源軟鏈段之嵌段共軛高分子合成及其於電子元件之應用 Synthesis of Bio-based Block Copolymers with Conjugated Segments and Their Applications in Electronic Devices 126 Chapter 5 Introduction 127 5.1 Stretchable Polymer Semiconductors: Design, Synthesis and Applications 127 5.1.1 Design and Synthesis 128 5.1.2 Applications 133 5.2 Introduction to Bio-Based Polymers 137 5.2.1 Bio-Based Polymers for Optoelectronic Devices 137 5.2.2 Bio-Based and Biocompatible Polyesters 140 5.2.3 Poly(δ-decanolactone) (PDL): A Bio-Based and Soft Polyester 141 5.3 Research Objectives 143 5.4 Tables and Figures 147 Chapter 6 Poly(3-hexylthiophene)-block-poly(δ-decanolactone)s: Toward High-Performance and Stretchable Semiconducting Material Through Branched Soft–hard–soft Type Triblock Copolymer Design 154 6.1 Background 154 6.2 Experimental Section 157 6.2.1 Materials 157 6.2.2 Polymer Synthesis 158 6.2.3 Characterization 168 6.3 Results and Discussion 172 6.3.1 Polymer Characterization 172 6.3.2 Thermal Properties 174 6.3.3 Selective Solvent Process Versus Optical and Electrochemical Properties 177 6.3.4 Thin-film Morphology, Phase Separation and Crystallinity 182 6.3.5 Charge mobility and Mechanical Properties 187 6.3.6 Stretchable OFET Applications 192 6.4 Summary 196 6.5 Tables and Figures 198 Chapter 7 Poly(9,9-di-n-hexyl-2,7-fluorene)-block-poly(δ-decanolactone)s: Effect of Soft Segment Branching on Electronic Properties of Stretchable Polymer Electret 229 7.1 Background 229 7.2 Experimental Section 232 7.2.1 Materials 232 7.2.2 Polymer Synthesis 233 7.2.3 Characterization 236 7.3 Results and Discussion 240 7.3.1 Polymer Characterization 240 7.3.2 Thermal Properties 242 7.3.3 Optical and Electrochemical Properties 245 7.3.4 Thin-film Morphology and Analysis of Crystalline Polyfluorene Domain 246 7.3.5 Charge Trapping Properties of the Polymer Electrets 250 7.3.6 Stretchable OFET Memory Applications 255 7.4 Summary 257 7.5 Tables and Figures 258 Chapter 8 Conclusion and Perspectives 276 8.1 Conclusion 276 8.2 Future Work 279 8.3 Tables and Figures 282 REFERENCE 283 AUTOBIOGRAPHY I PUBLICATION LIST II"
dc.language.isoen
dc.title(I) 可拉伸之聚矽氧烷-醯亞胺高分子合成及其於軟性電子元件之應用 (II) 具有生物來源軟鏈段之嵌段共軛高分子合成及其於電子元件之應用zh_TW
dc.title(I) Development of Stretchable Poly(siloxane-imide)s and Their Applications in Soft Electronic Devices (II) Synthesis of Bio-based Block Copolymers with Conjugated Segments and Their Applications in Electronic Devicesen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.coadvisor佐藤敏文(Toshifumi Satoh)
dc.contributor.oralexamcommittee鄭如忠(Hsin-Tsai Liu),童世煌(Chih-Yang Tseng),郭霽慶,劉振良,邱昱誠
dc.subject.keyword拉伸電子元件,聚(矽氧烷-醯亞胺),聚丁位癸内酯,嵌段共軛高分子,有機場效電晶體,記憶體,zh_TW
dc.subject.keywordstretchable electronics,poly(siloxane-imide)s,poly(δ-decanolactone),conjugated block copolymers,organic field-effect transistor,memory device,en
dc.relation.page294
dc.identifier.doi10.6342/NTU202103564
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0510202122191300.pdf16.52 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved